Skip to main content

Plant Monoterpenes Camphor, Eucalyptol, Thujone, and DNA Repair

  • Reference work entry
  • First Online:

Abstract

Genotoxic and genoprotective effects of monoterpenes camphor, eucalyptol, and thujone were comparatively studied in bacterial and mammalian cells. In E. coli test system, low doses were antimutagenic against UV and 4NQO in the repair-proficient strain, but co-mutagenic in NER-deficient mutant. Additionally, they enhanced UV-induced SOS response and homologous recombination. However, high doses were mutagenic in NER- and MMR-deficient strains. Similarly, low doses decreased genotoxic effect of 4NQO in Vero cell line, while high doses were genotoxic. Genotoxicity was confirmed in human cell lines: fetal fibroblasts MRC-5 and colon carcinoma HT-29 and HCT116 cells.

Obtained results were consistent with hormesis phenomenon and indicated genotoxin-induced adaptive response provoked by low doses of monoterpenes: small amounts of DNA lesions evoked error-free DNA repair pathways, mainly NER, and provided protection against more potent genotoxic agents, such as UV and 4NQO. Adaptive response in E. coli is mediated by enhanced efficiency of NER during SOS induction. On the other hand, adaptive response in mammalian cells may involve transcriptional upregulation of NER genes DDB2, XPC, ERCC1, XPF, XPG, and LIG1 previously reported to be induced by UV. In addition, promotion of NER could involve UV-specific histone modifications, such as acetylation of H2A, H2B, H3, and H4, methylation of H3 and H4, and ubiquitination of H2A, H2B, H3, and H4.

Taking into account that numerous genotoxic agents induce DNA lesions repairable by NER, adaptive response provoked by camphor, eucalyptol, and thujone could be important for protection against environmental mutagens and carcinogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

4NQO:

4-Nitroquinoline 1-oxide

BER:

Base excision repair

DSB:

Double-strand break

HR:

Homologous recombination

MMR:

Mismatch repair

NER:

Nucleotide excision repair

NHEJ:

Nonhomologous end joining

TLS:

Translesion synthesis

References

  • Aggarwal R, Jha M, Shrivastava A et al (2015) Natural compounds: role in reversal of epigenetic changes. Biochem Mosc 80:972–989

    Article  CAS  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D et al (2008) Biological effects of essential oils – a review. Food Chem Toxicol 46:446–475

    Article  CAS  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  Google Scholar 

  • Bennett EJ, Harper JW (2008) DNA damage: ubiquitin marks the spot. Nat Struct Mol Biol 15:20–22

    Article  CAS  Google Scholar 

  • Berić T, Nikolić B, Stanojević J et al (2008) Protective effect of basil (Ocimum basilicum L.) against oxidative DNA damage and mutagenesis. Food Chem Toxicol 46:724–732

    Article  Google Scholar 

  • Bozkurt E, Atmaca H, Kisim A et al (2012) Effects of Thymus serpyllum extract on cell proliferation, apoptosis and epigenetic events in human breast cancer cells. Nutr Cancer 64:1245–1250

    Article  Google Scholar 

  • Bugarin D, Grbović S, Orčič D et al (2014) Essential oil of Eucalyptus gunnii hook. As a novel source of antioxidant, antimutagenic and antibacterial agents. Molecules 19:19007–19020

    Article  Google Scholar 

  • Busch C, Burkard M, Leischner C et al (2015) Epigenetic activities of flavonoids in the prevention and treatment of cancer. Clin Epigenetics 7:64. https://doi.org/10.1186/s13148-015-0095-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese EJ (2010) Hormesis is central to toxicology, pharmacology and risk assessment. Hum Exp Toxicol 29:249e261

    Google Scholar 

  • Camphausen K, Tofilon PJ (2007) Inhibition of histone deacetylation: a strategy for tumor radiosensitization. J Clin Oncol 25:4051–4056

    Article  CAS  Google Scholar 

  • Cao LL, Shen C, Zhu WG (2016) Histone modifications in DNA damage response. Sci China Life Sci 59:257–270

    Article  CAS  Google Scholar 

  • Carrier F, Georgel PT, Pourquier P et al (1999) Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol Cell Biol 19:1673–1685

    Article  CAS  Google Scholar 

  • Christmann M, Kaina B (2013) Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res 41:8403–8420

    Article  CAS  Google Scholar 

  • Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204

    Article  CAS  Google Scholar 

  • Conde F, Refolio E, Cordon-Preciado V et al (2009) The Dot1 histone methyltransferase and the Rad9 checkpoint adaptor contribute to cohesin-dependent double-strand break repair by sister chromatid recombination in Saccharomyces cerevisiae. Genetics 182:437–446

    Article  Google Scholar 

  • Di Sotto A, Mazzanti G, Carbone F et al (2011) Genotoxicity of lavender oil, linalyl acetate, and linalool on human lymphocytes in vitro. Environ Mol Mutagen 52:69–71

    Article  Google Scholar 

  • Douglas P, Zhong J, Ye R et al (2010) Protein phosphatase 6 interacts with the DNA-dependent protein kinase catalytic subunit and dephosphorylates gamma-H2AX. Mol Cell Biol 30:1368–1381

    Article  CAS  Google Scholar 

  • Escargueil AE, Soares DG, Salvador M et al (2008) What histone code for DNA repair? Mutat Res 658:259–270

    Article  CAS  Google Scholar 

  • Fernandez-Capetillo O, Allis CD, Nussenzweig A (2004) Phosphorylation of histone H2B at DNA double-strand breaks. J Exp Med 199:1671–1677

    Article  CAS  Google Scholar 

  • Fnu S, Williamson EA, De Haro LP et al (2011) Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end-joining. P Natal Acad Sci USA 108:540–545

    Article  CAS  Google Scholar 

  • Fradet-Turcotte A, Canny MD, Escribano-Diaz C et al (2013) 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature 499:50–54

    Article  CAS  Google Scholar 

  • Guo R, Chen J, Mitchell DL et al (2011) GCN5 and E2F1 stimulate nucleotide excision repair by promoting H3K9 acetylation at sites of damage. Nucleic Acids Res 39:1390–1397

    Article  CAS  Google Scholar 

  • Hunt CR, Ramnarain D, Horikoshi N et al (2013) Histone modifications and DNA double-strand break repair after exposure to ionizing radiations. Radiat Res 179:383–392

    Article  CAS  Google Scholar 

  • Ko HL, Ren EC (2012) Functional aspects of PARP1 in DNA repair and transcription. Biomol Ther 2:524–548

    CAS  Google Scholar 

  • Kocaman AY, Rencüzoǧullari E, Topaktaş M et al (2011) The effects of 4-thujanol on chromosome aberrations, sister chromatid exchanges and micronucleus in human peripheral blood lymphocytes. Cytotechnology 63:493–502

    Article  CAS  Google Scholar 

  • Koh KH, Kang HJ, Li LS et al (2005) Impaired nonhomologous end-joining in mismatch repair-deficient colon carcinomas. Lab Investig 85:1130–1138

    Article  CAS  Google Scholar 

  • Lahtz C, Pfeifer GP (2011) Epigenetic changes of DNA repair genes in cancer. J Mol Cell Biol 3:51–58

    Article  CAS  Google Scholar 

  • Lee JS, Smith E, Shilatifard A (2010) The language of histone crosstalk. Cell 142:682–685

    Article  CAS  Google Scholar 

  • Li S (2012) Implication of posttranslational histone modifications in nucleotide excision repair. J Mol Sci 13:12461–12486

    Article  CAS  Google Scholar 

  • Mimica-Dukić N, Bugarin D, Grbović S et al (2010) Essential oil of Myrtus communis L. as a potential antioxidant and antimutagenic agents. Molecules 15:2759–2770

    Article  Google Scholar 

  • Mitić-Ćulafić D, Žegura B, Nikolić B et al (2009) Protective effect of linalool, myrcene and eucalyptol against t-butyl hydroperoxide induced genotoxicity in bacteria and cultured human cells. Food Chem Tox 47:260–266

    Article  Google Scholar 

  • Niehrs C, Schäfer A (2012) Active DNA demethylation by Gadd45 and DNA repair. Trends Cell Biol 22:220–227

    Article  CAS  Google Scholar 

  • Nikolić B, Jovanović B, Mitić-Ćulafić D et al (2015) Comparative study of genotoxic, antigenotoxic and cytotoxic activities of monoterpenes camphor, eucalyptol and thujone in bacteria and mammalian cells. Chem Biol Interact 242:263–271

    Article  Google Scholar 

  • Nikolić B, Mitić-Ćulafić D, Stajković-Srbinović O et al (2012) Effect of metabolic transformation of monoterpenes on antimutagenic potential in bacterial tests. Arch Biol Sci 64:885–894

    Article  Google Scholar 

  • Nikolić B, Mitić-Ćulafić D, Vuković-Gačić B et al (2011a) The antimutagenic effect of monoterpenes against UV-irradiation-, 4NQO- and t-BOOH-induced mutagenesis in E. coli. Arch BiolSci 63:117–128

    Article  Google Scholar 

  • Nikolić B, Mitić-Ćulafić D, Vuković-Gačić B et al (2011b) Modulation of genotoxicity and DNA repair by plant monoterpenes camphor, eucalyptol and thujone in Escherichia coli and mammalian cells. Food Chem Toxicol 49:2035–2045

    Article  Google Scholar 

  • Panier S, Boulton SJ (2014) Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Bio 15:7–18

    Article  CAS  Google Scholar 

  • Pelkonen O, Abass K, Wiesner J (2013) Thujone and thujone-containing herbal medicinal and botanical products: toxicological assessment. Regul Toxicol Pharmacol 65:100–107

    Article  CAS  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K et al (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  CAS  Google Scholar 

  • Sasaki T, Lynch KL, Mueller CV et al (2014) Heterochromatin controls gammaH2A localization in Neurospora crassa. Eukaryot Cell 13:990–1000

    Article  Google Scholar 

  • Schlade-Bartusiak K, Stembalska-Kozlowska A, Bernady M et al (2002) Analysis of adaptive response to bleomycin and mitomycin C. Mutat Res 513:75–81

    Article  CAS  Google Scholar 

  • Simić D, Vuković-Gačić B, Knežević-Vukčević J (1998) Detection of natural bioantimutagens and their mechanisms of action with bacterial assay-system. Mutat Res 402:51–57

    Article  Google Scholar 

  • Smith ML, Ford JM, Hollander MC et al (2000) p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 20:3705–3714

    Article  CAS  Google Scholar 

  • Stajković O, Berić-Bjedov T, Mitić-Ćulafić D et al (2007) Antimutagenic properties of basil (Ocimum basilicum L.) in Salmonella typhimurium TA100. Food Technol Biotehnol 45:213–217

    Google Scholar 

  • Surh Y-J (2011) Xenohormesis mechanisms underlying chemopreventive effects of some dietary phytochemicals. Ann N Y Acad Sci 1229:1–6

    Article  Google Scholar 

  • Tatum D, Li S (2011) Evidence that the histone methyltransferase Dot1 mediates global genomic repair by methylating histone H3 on lysine 79. J Biol Chem 286:17530–17535

    Article  CAS  Google Scholar 

  • Tjeertes JV, Mille KM, Jackson SP (2009) Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J 28:1878–1889

    Article  CAS  Google Scholar 

  • Tomicic MT, Reischmann P, Rasenberger B et al (2011) Delayed c-Fos activation in human cells triggers XPF induction and an adaptive response to UVC-induced DNA damage and cytotoxicity. Cell Mol Life Sci 68:1785–1798

    Article  CAS  Google Scholar 

  • Truglio JJ, Croteau DL, VanHouten B et al (2006) Prokaryotic nucleotide excision repair: the UvrABC system. Chem Rev 106:233–252

    Article  CAS  Google Scholar 

  • Utley RT, Lacoste N, Jobin-Robitaille O et al (2005) Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol Cell Biol 25:8179–8190

    Article  CAS  Google Scholar 

  • Vuković-Gačić B, Nikčević S, Berić-Bjedov T et al (2006) Antimutagenic effect of essential oil of sage (Salvia officinalis L.) and its monoterpenes against UV-induced mutations in Escherichia coli and Saccharomyces cerevisiae. Food Chem Toxicol 44:1730–1738

    Article  Google Scholar 

  • Wolff S, Afzal V, Wiencke JK et al (1988) Human lymphocytes exposed to low doses of ionizing radiations become refractory to high doses of radiation as well as to chemical mutagens that induce double-strand breaks in DNA. Int J Radiat Biol Relat Stud Phys Chem Med 53:39–47

    Article  CAS  Google Scholar 

  • Wu W, Nishikawa H, Fukuda T et al (2015) Interaction of BARD1 and HP1 is required for BRCA1 retention at sites of DNA damage. Cancer Res 75:1311–1321

    Article  CAS  Google Scholar 

  • Ye N, Bianchi MS, Bianchi NO et al (1999) Adaptive enhancement and kinetics of nucleotide excision repair in humans. Mutat Res 435:43–61

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development of Republic of Serbia, Project No. 172058

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biljana Nikolić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nikolić, B., Mitić-Ćulafić, D., Vuković-Gačić, B., Knežević-Vukčević, J. (2019). Plant Monoterpenes Camphor, Eucalyptol, Thujone, and DNA Repair. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_106

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_106

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics