Skip to main content

Adaptive Phase II Trials

  • Living reference work entry
  • First Online:
Principles and Practice of Clinical Trials
  • 530 Accesses

Abstract

Phase II trials are designed to obtain preliminary efficacy information about a new therapy in order to assess whether the new therapy should be tested in definitive (phase III) trials. Adaptive trial designs allow the design of a trial to be changed during its conduct, possibly using accruing outcome data. Adaptations to phase II trials considered in this chapter include formal interim monitoring, phase II/III trial designs, adaptations related to biomarker subgroups, sample size reassessment, outcome-adaptive randomization, and adaptive pooling of outcome results across patient subgroups. Adaptive phase II trials allow for the possibility of trials reaching their conclusions earlier, with more patients being treated with therapies that have activity for them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen CE, Laetsch TW, Mody R, Irwin MS, Lim MS, Adamson PC, Seibel NL, Parsons DW, Cho YJ, Janeway K, on behalf of the Pediatric MATCH Target and Agent Prioritization Committee (2017) Target and Agent Prioritization for the Children’s Oncology Group – National Cancer Institute Pediatric MATCH Trial. J Natl Cancer Inst 109:djw274

    Article  Google Scholar 

  • Barker AD, Sigman CC, Kelloff GJ, Hylton NM, Berry DA, Esserman LJ (2009) I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther 86:97–100

    Article  Google Scholar 

  • Bookman MA, Brady MF, McGuire WP, Harper PG, Alberts DS, Friedlander M, Colombo N, Fowler JM, Argenta PA, De Geest K, Mutch DG, Burger RA, Swart AM, Trimble EL, Accario-Winslow C, Roth LM (2009) Evaluation of new platinum-based treatment regimens in advanced-stage ovarian cancer: a phase III trial of the Gynecologic Cancer Inter Group. J Clin Oncol 27:1419–1425

    Article  Google Scholar 

  • Bretz F, Schmidli H, König F, Racine A, Maurer W (2006) Confirmatory seamless phase II/III clinical trials with hypothesis selection at interim: general concepts. Biom J 48:623–634

    Article  MathSciNet  Google Scholar 

  • Burman CF, Sonesson C (2006) Are flexible designs sound? Biometrics 62:664–669

    Article  MathSciNet  MATH  Google Scholar 

  • Byar DP, Simon RM, Friedewald WT, Schlesselman JJ, DeMets DL, Ellenberg JH, Gail MH, Ware JH (1976) Randomized clinical trials – perspectives on some recent ideas. N Engl J Med 295:74–80

    Article  Google Scholar 

  • Campbell BC, Mitchell PJ, Yan B, Parsons MW, Christensen S, Churilov L, Dowling RJ, Dewey H, Brooks M, Miteff F, Levi C, Krause M, Harrington TJ, Faulder KC, Steinfort BS, Kleinig T, Scroop R, Chryssidis S, Barber A, Hope A, Moriarty M, McGuinness B, Wong AA, Coulthard A, Wijeratne T, Lee A, Jannes J, Leyden J, Phan TG, Chong W, Holt ME, Chandra RV, Bladin CF, Badve M, Rice H, de Villiers L, Ma H, Desmond PM, Donnan GA, Davis SM, EXTEND-IA Investigators (2014) A multicenter, randomized, controlled study to investigate EXtending the time for Thrombolysis in Emergency Neurological Deficits with Intra-Arterial therapy (EXTEND-IA). Int J Stroke 9:126–132

    Article  Google Scholar 

  • Cecchini M, Rubin EH, Blumenthal GM, Ayalew K, Burris HA, Russell-Einhorn M, Dillon H, Lyerly HK, Reaman GH, Boerner S, LoRusso PM (2019) Challenges with novel clinical trial designs: master protocols. Clin Cancer Res 25:2049–2057

    Article  Google Scholar 

  • Chen YH, DeMets DL, Lan KK (2004) Increasing the sample size when the unblinded interim result is promising. Stat Med 23:1023–1038

    Article  Google Scholar 

  • Chu Y, Yuan Y (2018) Bayesian basket trial design using a calibrated Bayesian hierarchical model. Clin Trials 15:149–158

    Article  Google Scholar 

  • Cuffe RL, Lawrence D, Stone A, Vandemeulebroecke M (2014) When is a seamless study desirable? Case studies from different pharmaceutical sponsors. Pharm Stat 13:229–237

    Article  Google Scholar 

  • Cunanan KM, Iasonos A, Shen R, Gönen M (2019) Variance prior specification for a basket trial design using Bayesian hierarchical modeling. Clin Trials 16:142–153

    Article  Google Scholar 

  • Emerson SS, Levin GP, Emerson SC (2011) Comments on ‘Adaptive increase in sample size when interim results are promising: a practical guide with examples’. Stat Med 30:3285–3301

    Article  MathSciNet  Google Scholar 

  • Fleming TR (1982) One-sample multiple testing procedure for phase II clinical trials. Biometrics 38:143–151

    Article  MATH  Google Scholar 

  • Freidlin B, Korn EL (2009) Monitoring for lack of benefit: a critical component of a randomized clinical trial. J Clin Oncol 27:629–633

    Article  Google Scholar 

  • Freidlin B, Korn EL (2013) Borrowing information across subgroups: is it useful? Clin Cancer Res 19:1326–1334

    Article  Google Scholar 

  • Freidlin B, Korn EL (2017) Sample size adjustment designs with time-to-event outcomes: a caution. Clinical Trials 14:597–604

    Article  Google Scholar 

  • Freidlin B, Korn EL, Gray R, Martin A (2008) Multi-arm clinical trials of new agents: some design considerations. Clin Cancer Res 14:4368–4371

    Article  Google Scholar 

  • Freidlin B, McShane LM, Korn EL (2010) Randomized clinical trials with biomarkers: design issues. J Natl Cancer Inst 102:152–160

    Article  Google Scholar 

  • Freidlin B, McShane LM, Polley MY, Korn EL (2012) Randomized phase II trials designs with biomarkers. J Clin Oncol 30:1–6

    Article  Google Scholar 

  • Freidlin B, Korn EL, Abrams JS (2018) Bias, operational bias, and generalizability in phase II/III trials. J Clin Oncol 36:1902–1904

    Article  Google Scholar 

  • Green S, Benedetti J, Smith A, Crowley J (2016) Clinical trials in oncology, 3rd edn. CRC Press, New York

    Google Scholar 

  • Hey SP, Kimmelman J (2015) Are outcome-adaptive allocation trials ethical? (and Commentary). Clin Trials 12:102–127

    Article  Google Scholar 

  • Kopp-Schneider A, Calderazzo S, Wiesenfarth M (2019) Power gains by using external information in clinical trials are typically not possible when requiring strict type I error control. Biom J. https://doi.org/10.1002/bimj.201800395

  • Korn EL, Freidlin B (2011a) Outcome-adaptive randomization: is it useful? J Clin Oncol 29:771–776

    Article  Google Scholar 

  • Korn EL, Freidlin B (2011b) Reply to Y. Yuan et al. J Clin Oncol 29:e393

    Article  Google Scholar 

  • Korn EL, Freidlin B (2017) Adaptive Clinical Trials: advantages and disadvantages of various adaptive design elements. J Natl Cancer Inst 109:dlx013

    Article  Google Scholar 

  • Korn EL, Freidlin B, Abrams JS, Halabi S (2012) Design issues in randomized phase II/III trials. J Clin Oncol 30:667–671

    Article  Google Scholar 

  • Lee JJ, Chu CT (2012) Bayesian clinical trials in action. Stat Med 31:2955–2971

    Article  MathSciNet  Google Scholar 

  • Mehta C (2017) Commentary on Freidlin and Korn. Clinical Trials 14:605–608

    Article  Google Scholar 

  • Meretoja A, Churilov L, Campbell BC, Aviv RI, Yassi N, Barras C, Mitchell P, Yan B, Nandurkar H, Bladin C, Wijeratne T, Spratt NJ, Jannes J, Sturm J, Rupasinghe J, Zavala J, Lee A, Kleinig T, Markus R, Delcourt C, Mahant N, Parsons MW, Levi C, Anderson CS, Donnan GA, Davis SM (2014) The spot sign and tranexamic acid on preventing ICH growth – Australasia Trial (STOP-AUST): protocol of a phase II randomized, placebo-controlled, double-blind, multicenter trial. Int J Stroke 9:519–524

    Article  Google Scholar 

  • Pal SK, Tangen CM, Thompson IM, Shuch BM, Haas NB, George DJ, Stein MN, Wright JJ, Plets M, Lara P (2017) A randomized, phase II efficacy assessment of multiple MET kinase inhibitors in metastatic papillary renal carcinoma (PRCC): SWOG S1500. J Clin Oncol 35(15_suppl):TPS4599

    Article  Google Scholar 

  • Papadimitrakopoulou V, Lee JJ, Wistuba II, Tsao AS, Fossella FV, Kalhor N, Gupta S, Byers LA, Izzo JG, Gettinger SN, Goldberg SB, Tang X, Miller VA, Skoulidis F, Gibbons DL, Shen L, Wei C, Diao L, Peng SA, Wang J, Tam AL, Coombes KR, Koo JS, Mauro DJ, Rubin EH, Heymach JV, Hong WK, Herbst RS (2016) The BATTLE-2 study: a biomarker-integrated targeted therapy study in previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 334:3638–3647

    Article  Google Scholar 

  • Pocock SJ, Simon R (1975) Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics 31:103–115

    Article  Google Scholar 

  • Sekeres MA, Othus M, List AF, Odenike O, Stone RM, Gore SD, Litzow MR, Buckstein R, Fang M, Roulston D, Bloomfield CD, Moseley A, Nazha A, Zhang Y, Velasco MR, Gaur R, Atallah E, Attar EC, Cook EK, Cull AH, Rauh MJ, Appelbaum FR, Erba HP (2017) Randomized Phase II Study of azacitidine alone or in combination with lenalidomide or with vorinostat in higher-risk myelodysplastic syndromes and chronic myelomonocytic leukemia: North American Intergroup Study SWOG S1117. J Clin Oncol 35:2745–2753

    Article  Google Scholar 

  • Simon R (1989) Optimal two-stage designs for phase II clinical trials. Control Clin Trials 10:1–10

    Article  Google Scholar 

  • Thall PF, Wathen JK, Bekele BN, Champlin RE, Baker LH, Benjamin RS (2003) Hierarchical Bayesian approaches to phase II trials in diseases with multiple subtypes. Stat Med 22:763–780

    Article  Google Scholar 

  • Thall P, Fox P, Wathen J (2015) Statistical controversies in clinical research: scientific and ethical problems with adaptive randomization in comparative clinical trials. Ann Oncol 26:1621–1628

    Article  Google Scholar 

  • Vale CL, Tierney JF, Fisher D, Adams RA, Kaplan R, Maughan TS, Parmar MK, Meade AM (2012) Does anti-EGFR therapy improve outcome in advanced colorectal cancer? A systematic review and meta-analysis. Cancer Treat Rev 38:618–625

    Article  Google Scholar 

  • Wang S-J, Hung HMJ, Robert O’NR (2012) Paradigms for adaptive statistical information designs: practical experiences and strategies. Stat Med 31:3011–3023

    Article  MathSciNet  Google Scholar 

  • Wieand S, Schroeder G, O’Fallon JR (1994) Stopping when the experimental regimen does not appear to help. Stat Med 13:1453–1458

    Article  Google Scholar 

  • Zhang QE, Wu Q, Harari PM, Rosenthal DI (2019) Randomized phase II/III confirmatory treatment selection design with a change of survival end points: statistical design of Radiation Therapy Oncology Group 1216. Head Neck 41:37–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Freidlin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Freidlin, B., Korn, E.L. (2020). Adaptive Phase II Trials. In: Piantadosi, S., Meinert, C. (eds) Principles and Practice of Clinical Trials. Springer, Cham. https://doi.org/10.1007/978-3-319-52677-5_276-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52677-5_276-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52677-5

  • Online ISBN: 978-3-319-52677-5

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics