Skip to main content

Modeling of Radiation Damage in Materials: Best Practices and Future Directions

  • Living reference work entry
  • First Online:
Book cover Handbook of Materials Modeling

Abstract

In this section of the Handbook of Materials Modeling, modern methods to model radiation damage in materials are considered. This introductory chapter puts the topic into context, briefly overviews the multiscale nature of radiation effects, and surveys most important methods used to advance this field of physics. Emphasis is given to advances from the past 10 years, highlighting specific bodies of work, some of which are reviewed in this section, which have advanced both our scientific understanding of and best practices for simulating radiation damage. This section differs somewhat from that of Devanathan and Marian entitled “Nuclear Materials,” in that this section focuses more on modeling techniques for radiation damage as applied to pure materials, not necessarily nuclear materials. However, much can be learned from reading the shared perspectives in both sections, as many similar topics are addressed from different points of view. The more specific chapters in this section are introduced in this overview, with emphasis on predicted directions in the field for the next 10 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bohr N (1913) On the theory of the decrease of velocity of moving electrified particles on passing through matter. Philos Mag 25:10

    Article  Google Scholar 

  • Byggmästar J, Granberg F, Nordlund K (2017) Molecular dynamics simulations of thermally activated edge dislocation unpinning from voids in alpha-Fe. Phys Rev Mater 1:053603

    Article  Google Scholar 

  • Chason E, Picraux ST, Poate M, Borland JO, Current MI, Diaz de la Rubia T, Eaglesham DJ, Holland OW, Law ME, Magee CW, Mayer JW, Melngailis J, Tasch AF (1997) Ion beams in silicon processing and characterization. J Appl Phys 81:6513

    Article  ADS  Google Scholar 

  • Diaz de la Rubia T, Averback RS, Benedek R, King WE (1987) Role of thermal spikes in energetic collision cascades. Phys Rev Lett 59:1930 See also erratum: Phys Rev Lett 60:76 (1988)

    Article  ADS  Google Scholar 

  • Fermi E, Richtmyer RD (1948) Note on census-taking in Monte Carlo calculations. A declassified report by Enrico Fermi. From the Los Alamos Archive. Technical Report Number LAMS-805, Series A (July 11)

    Google Scholar 

  • Fermi E, Teller E (1947) The capture of negative mesotrons in matter. Phys Rev 72:399

    Article  ADS  Google Scholar 

  • Gades H, Urbassek HM (1995) Simulation of ion-induced mixing of metals. Phys Rev B 51:14559

    Article  ADS  Google Scholar 

  • Grove WR (1852) VII. On the electro-chemical polarity of gases. Philos Trans R Soc 142(I):87

    Article  ADS  Google Scholar 

  • Hirth JP, Lothe J (1992) Theory of dislocations, 2nd edn. Krieger, Malabar

    MATH  Google Scholar 

  • Holmström E, Kuronen A, Nordlund K (2008) Threshold defect production in silicon determined by density functional theory molecular dynamics simulations. Phys Rev B 78:045202

    Article  ADS  Google Scholar 

  • Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 61:689

    Article  ADS  Google Scholar 

  • Kojima S, Satoh Y, Taoka H, Ishida I, Yoshie T, Kiritani M (1989) Confirmation of vacancy-type stacking fault tetrahedra in quenched, deformed and irradiated face-centred cubic metals. Philos Mag A 59:519

    Article  ADS  Google Scholar 

  • Krasheninnikov AV, Nordlund K (2010) Ion and electron irradiation-induced effects in nanostructured materials. J Appl Phys 107:071301

    Article  ADS  Google Scholar 

  • Lebensohn RA, Tomé CN (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall Mater 41(9):2611–2624

    Article  Google Scholar 

  • Lindhard J, Scharff M, Schiott HE (1963) Range concepts and heavy ion ranges. Kgl Danske Vid Selsk Mat Fys Medd 33(14):1

    Google Scholar 

  • Meldrum A, Zinkle SJ, Boatner LA, Ewing RC (1998) A transient liquid-like phase in the displacement cascades in zircon, hafnon and thorite. Nature 395:56

    Article  ADS  Google Scholar 

  • Mueller E, Bahadur K (1956) Field ionization of gases at a metal surface and the resolution of the field ion microscope. Phys Rev 102:624

    Article  ADS  Google Scholar 

  • Nelson WR (1978) Solution of the electromagnetic cascade shower problem by analog Monte Carlo methods – EGS. In: Nelson WR (ed) Computer techniques in radiation transport and dosimetry. New York/London, Plenum Press

    Google Scholar 

  • Nordlund K, Gao F (1999) Formation of stacking fault tetrahedra in collision cascades. Appl Phys Lett 74:2720

    Article  ADS  Google Scholar 

  • Nordlund K, Ghaly M, Averback RS, Caturla M, Diaz de la Rubia T, Tarus J (1998) Defect production in collision cascades in elemental semiconductors and FCC metals. Phys Rev B 57:7556

    Article  ADS  Google Scholar 

  • Nordlund K, Wallenius J, Malerba L (2005) Molecular dynamics simulations of threshold energies in Fe. Nucl Instr Meth Phys Res B 246:322

    Article  ADS  Google Scholar 

  • Olsson P, Becquart CS, Domain C (2016) Ab initio threshold displacement energies in iron. Mater Res Lett 4:216

    Article  Google Scholar 

  • Polvi J, Luukkonen P, Nordlund K, Järvi TT, Kemper TW, Sinnott SB (2012) Primary radiation defect production in polyethylene and cellulose. J Phys Chem B 116:13932

    Article  Google Scholar 

  • Queyreau S, Monnet G, Devincre B (2010) Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Mater 58:5586

    Article  Google Scholar 

  • Robinson MT, Torrens IM (1974) Computer simulation of atomic-displacement cascades in solids in the binary-collision approximation. Phys Rev B 9:5008

    Article  ADS  Google Scholar 

  • Ruault MO, Chaumont J, Penisson JM, Bourret A (1984) High resolution and in situ investigation of defects in Bi-irradiated Si. Philos Mag A 50:667

    Article  ADS  Google Scholar 

  • Rutherford E (1911) The scattering of alpha and beta rays by matter and the structure of the atom. Philos Mag 6:31

    Google Scholar 

  • Seitz F, Koehler JS (1956) Displacement of atoms during irradiation. In: Seitz F, Turnbull D (eds) Solid state physics, vol 2. Academic Press, New York, p 307

    Google Scholar 

  • Takaki S et al (1983) The resistivity recovery of high purity and carbon doped iron following low temperature electron irradiation. Rad Eff 79(1–4):87–122

    Article  Google Scholar 

  • Terentyev D, Klimenkov M, Malerba L (2009) Confinement of motion of interstitial clusters and dislocation loops in BCC Fe–Cr alloys. J Nucl Mater 393:30

    Article  ADS  Google Scholar 

  • Yi X, Sand AE, Mason DR, Kirk MA, Roberts SG, Nordlund K, Dudarev SL (2015) Direct observation of size scaling and elastic interaction between nano-scale defects in collision cascades. Europhys Lett 110:36001

    Article  ADS  Google Scholar 

  • Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in matter. Pergamon, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Short .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nordlund, K., Short, M.P. (2019). Modeling of Radiation Damage in Materials: Best Practices and Future Directions. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_146-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_146-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics