Skip to main content

Inkjet Printing for Biofabrication

  • Reference work entry
  • First Online:
3D Printing and Biofabrication

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

Abstract

Inkjet printing is a noncontact printing technology with high resolution, high throughput, and considerable reproducibility. Instead of printing normal ink, inkjet technology is also applied in the field of biofabrication to print living cells and other biological factors. Cell viability and function were demonstrated to be sustained after printing. Besides two dimensional cell patterns, three-dimensional cell-laden hydrogel structures can also be inkjet printed through cross-linking. Special phenomena such as the temporary permeability change of cell membranes were also observed during printing procedures, thus making it possible to achieve gene transfection through inkjet printing. Inkjet-printed biomolecule patterns with gradient concentration were also used to direct cell fates. Since the diversity of bioink and the capability of fabricating complex structures, inkjet bioprinting behaves as an effective tool in the field of biofabrication. The applications of inkjet printing include but not limit to drug formulation, tissue repair, and cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arai K, Iwanaga S, Toda H, Genci C, Nishiyama Y, Nakamura M (2011) Three-dimensional inkjet biofabrication based on designed images. Biofabrication 3(3):034113

    Article  CAS  PubMed  Google Scholar 

  • Biase MD, Saunders RE, Tirelli N, Derby B (2011) Inkjet printing and cell seeding thermoreversible photocurable gel structures. Soft Matter 7(6):2639–2646

    Article  CAS  Google Scholar 

  • Campbell P, Miller EG, Walker L, Weiss L (2005) Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. Biomaterials 26(33):6762

    Article  CAS  PubMed  Google Scholar 

  • Canfield B, Holstun C, Yeun KWW (1997) Method and apparatus for reducing the size of drops ejected from a thermal ink jet printhead. US, US5673069

    Google Scholar 

  • Cheow WS, Kiew TY, Hadinoto K (2015) Combining inkjet printing and amorphous nanonization to prepare personalized dosage forms of poorly-soluble drugs. Eur J Pharm Biopharm 96:314–321

    Article  CAS  PubMed  Google Scholar 

  • Choi WS, Ha D, Park S, Kim T (2011) Synthetic multicellular cell-to-cell communication in inkjet printed bacterial cell systems. Biomaterials 32(10):2500–2507

    Article  CAS  PubMed  Google Scholar 

  • Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang Y (2015) Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng 112(5):1047

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30(31):6221–6227

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Dean D, Ruggeri ZM, Boland T (2010) Cell damage evaluation of thermal inkjet printed chinese hamster ovary cells. Biotechnol Bioeng 106(6):963–969

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Boland T, D D'Lima D, Martin K (2012a) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6(2):149–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD (2012b) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng A 18(11–12):1304

    Article  CAS  Google Scholar 

  • Cui X, Gao G, Qiu Y (2013) Accelerated myotube formation using bioprinting technology for biosensor applications. Biotechnol Lett 35(3):315

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Gao G, Yonezawa T, Dai G (2014) Human cartilage tissue fabrication using three-dimensional inkjet printing technology. J Vis Exp 2014(88):e51294

    Google Scholar 

  • Cummins G, Desmulliez MPY (2012) Inkjet printing of conductive materials: a review. Circuit World 38(4):193–213

    Article  CAS  Google Scholar 

  • Dababneh AB, Ozbolat IT (2014) Bioprinting technology: a current state-of-the-art review. J Manuf Sci Eng 136(6):061016

    Article  Google Scholar 

  • de Gans BJ, Duineveld P, Schubert U (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16(3):203–213

    Article  CAS  Google Scholar 

  • Ferris C, Gilmore K, Beirne S, Mccallum D, Wallace G, Inhetpanhuis M (2013) Bio-ink for on-demand printing of living cells. Biomaterials 1(2):224–230

    Article  CAS  Google Scholar 

  • Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X (2014) Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J 9(10):1304

    Article  CAS  PubMed  Google Scholar 

  • Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20

    Article  CAS  PubMed  Google Scholar 

  • Hauschild S, Dr UL, Rumplecker A, Borchert U, Rank A, Schubert R et al (2005) Direct preparation and loading of lipid and polymer vesicles using inkjets. Small 1(12):1177–1180

    Article  CAS  PubMed  Google Scholar 

  • Hendriks J, Visser CW, Henke S, Leijten J, Saris DBF, Sun C et al (2015) Optimizing cell viability in droplet-based cell deposition. Sci Rep 5:11304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermanson O, Jepsen K, Rosenfeld MG (2002) N-cor controls differentiation of neural stem cells into astrocytes. Nature 419(6910):934

    Article  CAS  PubMed  Google Scholar 

  • Hock SW, Johnson DA, Van Veen MA (1996) Print quality optimization for a color ink-jet printer by using a larger nozzle for the black ink only. US, US 5521622 A

    Google Scholar 

  • Horváth L, Umehara Y, Jud C, Blank F, Petrifink A, Rothenrutishauser B (2015) Engineering an in vitro air-blood barrier by 3d bioprinting. Sci Rep 5:7974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu HY, Toth S, Simpson GJ, Harris MT (2015) Drop printing of pharmaceuticals: effect of molecular weight on PEG coated-naproxen/PEG 3350 solid dispersions. AICHE J 61(12):4502–4508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YS (2011) Tissue regeneration is a key tool for burn tissue repair. Zhonghua Shao Shang Za Zhi 27(1):6–7

    PubMed  CAS  Google Scholar 

  • Hudson KR, Cowan PB, Gondek JS (2000) Ink drop volume variance compensation for inkjet printing. US 6042211 A

    Google Scholar 

  • Ilkhanizadeh S, Teixeira AI, Hermanson O (2007) Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials 28(27):3936–3943

    Article  CAS  PubMed  Google Scholar 

  • Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, Mckay RD (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10(24):3129–3140

    Article  CAS  PubMed  Google Scholar 

  • Kamisuki S, Hagata T, Tezuka C, Nose Y (1998) A low power, small, electrostatically-driven commercial inkjet head. In: Proceedings of the eleventh international workshop on MICRO electro mechanical systems, 1998. Mems 98. IEEE, pp 63–68

    Google Scholar 

  • Kamisuki S, Fujii M, Takekoshi T, Tezuka C (2000) A high resolution, electrostatically-driven commercial inkjet head. In: Proceedings of the thirteenth international conference on MICRO electro mechanical systems. IEEE, pp 793–798

    Google Scholar 

  • Kazuhiko O, Yasuhiro O, Shuji G, Uchida MK (2002) Contractile responses of smooth muscle cells differentiated from rat neural stem cells. J Physiol 540(Pt 1):139

    Google Scholar 

  • Ker ED, Chu B, Phillippi JA, Gharaibeh B, Huard J, Weiss LE et al (2011a) Engineering spatial control of multiple differentiation fates within a stem cell population. Biomaterials 32(13):3413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ker ED, Nain AS, Weiss LE, Wang J, Suhan J, Amon CH et al (2011b) Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 32(32):8097–8107

    Article  CAS  PubMed  Google Scholar 

  • Kyser EL, Sears, SB (1980) Method and apparatus for recording with writing fluids and drop projection means therefor. US, US 4189734 A

    Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  PubMed  Google Scholar 

  • Le HP (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Technol 42(1):49–62

    CAS  Google Scholar 

  • Matsusaki M, Sakaue K, Kadowaki K, Akashi M (2013) Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Adv Healthc Mater 2(4):534

    Article  CAS  PubMed  Google Scholar 

  • Meléndez PA, Kane KM, Ashvar CS et al (2008) Thermal inkjet application in the preparation of oral dosage forms: dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques. J Pharm Sci 97(7):2619–2636

    Article  CAS  PubMed  Google Scholar 

  • Miller ED, Fisher GW, Weiss LE, Walker LM, Campbell PG (2006) Dose-dependent cell growth in response to concentration modulated patterns of FGF-2 printed on fibrin. Biomaterials 27(10):2213

    Article  CAS  PubMed  Google Scholar 

  • Miller ED, Phillippi JA, Fisher GW, Campbell PG, Walker LM, Weiss LE (2009) Inkjet printing of growth factor concentration gradients and combinatorial arrays immobilized on biologically-relevant substrates. Comb Chem High Throughput Screen 12(6):604–618

    Article  CAS  PubMed  Google Scholar 

  • Miller ED, Li K, Kanade T, Weiss LE, Walker LM, Campbell PG (2011) Spatially directed guidance of stem cell population migration by immobilized patterns of growth factors. Biomaterials 32(11):2775–2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3d tissue engineering. Trends Biotechnol 21(4):157

    Article  CAS  PubMed  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M (2012) Tissue engineering: a case study. In: Inkjet technology for digital fabrication, 1st edn. Wiley, Hoboken, pp 307–324

    Google Scholar 

  • Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K et al (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11(11–12):1658

    Article  CAS  PubMed  Google Scholar 

  • Owczarczak AB, Shuford SO, Wood ST, Deitch S, Dean D (2012) Creating transient cell membrane pores using a standard inkjet printer. J Vis Exp 2012(61):e3681

    Google Scholar 

  • Paquian Gi, et al. (2016) Stem cell induction via inkjet-mediated gene transfection. ETD Collection for University of Texas, El Paso. AAI10249984

    Google Scholar 

  • Pataky K, Braschler T, Negro A, Renaud P, Lutolf MP, Brugger J (2012) Microdrop printing of hydrogel bioinks into 3d tissue-like geometries. Adv Mater 24(3):391

    Article  CAS  PubMed  Google Scholar 

  • Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26(1):127–134

    Article  CAS  PubMed  Google Scholar 

  • Rayleigh L (1878) On the instability of jet. Proc Lond Math Soc 10(1):4–13

    Article  Google Scholar 

  • Rodríguez-Dévora JI, Zhang B, Reyna D, Shi ZD, Xu T (2012) High throughput miniature drug-screening platform using bioprinting technology. Biofabrication 4(3):035001

    Article  CAS  PubMed  Google Scholar 

  • Rune E (1951) Measuring instrument of the recording type. US, US2566443

    Google Scholar 

  • Saunders RE, Gough JE, Derby B (2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29(2):193–203

    Article  CAS  PubMed  Google Scholar 

  • Scoutaris N, Ross S, Douroumis D (2016) Current trends on medical and pharmaceutical applications of inkjet printing technology. Pharm Res 33(8):1799

    Article  CAS  PubMed  Google Scholar 

  • Shattil SJ, Cunningham M, Wiedmer T, Zhao J, Sims PJ, Brass LF (1992) Regulation of glycoprotein IIb-IIIa receptor function studied with platelets permeabilized by the pore-forming complement proteins C5b-9. J Biol Chem 267(26):18424

    PubMed  CAS  Google Scholar 

  • Silzel JW, Cercek B, Dodson C, Tsay T, Obremski RJ (1998) Mass-sensing, multianalyte microarray immunoassay with imaging detection. Clin Chem 44(9):2036–2043

    PubMed  CAS  Google Scholar 

  • Sun W, Lal P (2002) Recent development on computer aided tissue engineering – a review. Comput Methods Prog Biomed 67(2):85–103

    Article  Google Scholar 

  • Svanholm E (2007) Printability and ink-coating interactions in inkjet printing. Faculty of Technology & Science, Karlstad

    Google Scholar 

  • Sweet RG (1965) High frequency recording with electrostatically deflected ink jets. Rev Sci Instrum 36(2):131–136

    Article  Google Scholar 

  • Tse C, Whiteley R, Yu T, Stringer J, Macneil S, Haycock JW et al (2016) Inkjet printing schwann cells and neuronal analogue NG108-15 cells. Biofabrication 8(1):015017

    Article  CAS  PubMed  Google Scholar 

  • Weber C (1931) Zum zerfall eines flüssigkeitsstrahles. ZAMM 11(2):136–154

    Article  Google Scholar 

  • Xu C (2014) Freeform vertical and horizontal fabrication of alginate-based vascular-like tubular constructs using inkjetting. J Manuf Sci Eng 136(6):061020

    Article  Google Scholar 

  • Xu T, Petridou S, Lee EH, Roth EA, Vyavahare NR, Hickman JJ et al (2004) Construction of high-density bacterial colony arrays and patterns by the ink-jet method. Biotechnol Bioeng 85(1):29–33

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26(1):93

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB et al (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(19):3580–3588

    CAS  PubMed  Google Scholar 

  • Xu T, Baicu C, Aho M, Zile M, Boland T (2009a) Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 1(3):035001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu T, Rohozinski J, Zhao W, Moorefield EC, Atala A, Yoo JJ (2009b) Inkjet-mediated gene transfection into living cells combined with targeted delivery. Tissue Eng A 15(1):95

    Article  CAS  Google Scholar 

  • Xu F, Celli J, Rizvi I, Moon S, Hasan T, Demirci U (2011) A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J 6(2):204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Chai W, Huang Y, Markwald RR (2012) Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol Bioeng 109(12):3152–3160

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A (2013) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34(1):130–139

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S, Ueno A, Akiyama Y, Morishima K (2012) Cell patterning through inkjet printing of one cell per droplet. Biofabrication 4(4):045005

    Article  CAS  PubMed  Google Scholar 

  • Yamazoe H, Tanabe T (2009) Cell micropatterning on an albumin-based substrate using an inkjet printing technique. J Biomed Mater Res A 91A(4):1202–1209

    Article  CAS  Google Scholar 

  • Yanez M, Rincon J, Dones A, Maria CD, Gonzales R, Boland T (2015) In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds. Tissue Eng A 21(1–2):224

    Article  CAS  Google Scholar 

  • Zoltan SI (1972) Pulsed droplet ejecting system. US, US 3683212 A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, X., Chen, J., Liu, B., Wang, X., Ren, D., Xu, T. (2018). Inkjet Printing for Biofabrication. In: Ovsianikov, A., Yoo, J., Mironov, V. (eds) 3D Printing and Biofabrication. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-45444-3_26

Download citation

Publish with us

Policies and ethics