Skip to main content

Bioceramics for Musculoskeletal Regenerative Medicine: Materials and Manufacturing Process Compatibility for Synthetic Bone Grafts and Medical Devices

  • Reference work entry
  • First Online:
3D Printing and Biofabrication

Abstract

This chapter is focused on bioceramics for musculoskeletal regenerative medicine, with emphasis on material and manufacturing compatibility in the development of synthetic bone grafts. Bioceramics are classified into families depending on their relative bioactivity: passive, bioactive, and bioresorbable. Passive bioceramics, such as alumina and zirconia, are mainly used for load-bearing implants. Bioactive ceramics, such as bioactive glass, are useful to generate a strong bond between metallic surfaces and bone. Bioresorbable ceramics are applied to bone void filling and scaffolds for synthetic grafts. A description of bioceramics and their use in manufacturing processes is given, with major emphasis on techniques that may be useful in the fabrication of regenerative devices such as synthetic bone grafts. The manufacturing processes of interest are classified into molding, additive manufacturing, and coating techniques. The use of bioceramic-based scaffolds in bone repair animal models and clinical studies is reviewed. Finally, this chapter provides an outlook of future research directions for improved bioceramic use in synthetic bone grafts or regenerative skeletal devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbah SA, Lam CXL, Hutmacher DW, Goh JCH, Wong H-K (2009) Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery. Biomaterials 30:5086–5093

    Article  CAS  PubMed  Google Scholar 

  • Agarwal R, Williams K, Umscheid CA, Welch WC (2009) Osteoinductive bone graft substitutes for lumbar fusion: a systematic review. J Neurosurg Spine 11:729–740

    Article  PubMed  Google Scholar 

  • Almirall A, Larrecq G, Delgado J, Martınez S, Planell J, Ginebra M (2004) Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials 25:3671–3680

    Article  CAS  PubMed  Google Scholar 

  • Baradararan S, Hamdi M, Metselaar IH (2012) Biphasic calcium phosphate (BCP) macroporous scaffold with different ratios of HA/β-TCP by combination of gel casting and polymer sponge methods. Adv Appl Ceram 111:367–373

    Article  CAS  Google Scholar 

  • Bartolo P, Kruth J-P, Silva J, Levy G, Malshe A, Rajurkar K, Mitsuishi M, Ciurana J, Leu M (2012) Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann Manuf Technol 61:635–655

    Article  Google Scholar 

  • Best SM, Porter AE, Thian ES, Huang J (2008) Bioceramics: past, present and for the future. J Eur Ceram Soc 28:1319–1327

    Article  CAS  Google Scholar 

  • Bonda DJ, Manjila S, Selman WR, Dean D (2015) The recent revolution in the design and manufacture of cranial implants. Neurosurgery 77:814–824

    Article  PubMed  PubMed Central  Google Scholar 

  • Bose S, Fielding G, Tarafder S, Bandyopadhyay A (2013) Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol 31:594–605

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Xu GH, Yu XZ, Zhang WJ, Xiao ZY, Yao KD (2009) Fabrication and biological characteristics of β-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass. J Mater Sci Mater Med 20:351–358

    Article  CAS  PubMed  Google Scholar 

  • Cancedda R, Giannoni P, Mastrogiacomo M (2007) A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials 28:4240–4250

    Article  CAS  Google Scholar 

  • Carter B, Norton G (2007) Ceramic Materials. Springer, New York, pp 3–6

    Google Scholar 

  • Champion E (2013) Sintering of calcium phosphate bioceramics. Acta Biomater 9:5855–5875

    Article  CAS  PubMed  Google Scholar 

  • Chevalier J, Gremillard L (2009) Ceramics for medical applications: a picture for the next 20 years. J Eur Ceram Soc 29(7):1245–1255

    Article  CAS  Google Scholar 

  • Chiba S, Anada T, Suzuki K, Saito K, Shiwaku Y, Miyatake N, Baba K, Imaizumi H, Hosaka M, Itoi E, Suzuki O (2016) Effect of resorption rate and osteoconductivity of biodegradable calcium phosphate materials on the acquisition of natural bone strength in the repaired bone. J Biomed Mater Res A 104:2833–2842

    Article  CAS  PubMed  Google Scholar 

  • Crowley C, Wong JM-L, Fisher DM, Khan WS (2013) A systematic review on preclinical and clinical studies on the use of scaffolds for bone repair in skeletal defects. Curr Stem Cell Res Ther 8:243–252

    Article  CAS  PubMed  Google Scholar 

  • Dadsetan M, Guda T, Runge MB, Mijares D, Legeros RZ, Legeros JP, Silliman DT, Lu L, Wenke JC, Brown Baer PR, Yaszemski MJ (2015) Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Acta Biomater 18:9–20

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Liu H, Liu B, Wang Z, Li Y, Zhou G (2015) Porous β-Ca2SiO4 ceramic scaffolds for bone tissue engineering: in vitro and in vivo characterization. Ceram Int 41:5894–5902

    Article  CAS  Google Scholar 

  • Deckers J, Vleugels J, Kruth JP (2014) Additive manufacturing of ceramics: a review. J Ceram Sci Technol 5:245–260

    Google Scholar 

  • Elomaa L, Kokkari A, Närhi T, Seppälä JV (2013) Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly(ε-caprolactone) by stereolithography. Compos Sci Technol 74:99–106

    Article  CAS  Google Scholar 

  • El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR (2017) Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater 62:1–28

    Article  CAS  PubMed  Google Scholar 

  • Evaluate (2015) EvaluateMedTech® – world preview 2015, Outlook to 2020. www.evaluategroup.com

  • Felzmann R, Gruber S, Mitteramskogler G, Tesavibul P, Boccaccini AR, Liska R, Stampfl J (2012) Lithography-based additive manufacturing of cellular ceramic structures. Adv Eng Mater 14:1052–1058

    Article  CAS  Google Scholar 

  • Ghosh SK, Nandi SK, Kundu B, Datta S, De DK, Roy SK, Basu D (2008) In vivo response of porous hydroxyapatite and β-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J Biomed Mater Res B Appl Biomater 86:217–227

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Meng Z, Chen G, Xie D, Chen Y, Wang H, Tang W, Liu L, Jing W, Long J, Guo W, Tian W (2012) Restoration of critical-size defects in the rabbit mandible using porous nanohydroxyapatite-polyamide scaffolds. Tissue Eng A 18:1239–1252

    Article  CAS  Google Scholar 

  • Habibovic P, Gbureck U, Doillon CJ, Bassett DC, van Blitterswijk CA, Barralet JE (2008) Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 29:944–953

    Article  CAS  PubMed  Google Scholar 

  • Hannouche D, Hamadouche M, Nizard R, Bizot P, Meunier A, Sedel L (2005) Ceramics in total hip replacement. Clin Orthop Relat Res:62–71

    Google Scholar 

  • Hench LL (2006) The story of Bioglass®. J Mater Sci Mater Med 17:967–978

    Article  CAS  PubMed  Google Scholar 

  • Hench LL, Wilson J (2013) Introduction. In: Hench LL (ed) An introduction to bioceramics, 2nd edn. Imperial College Press, London, pp 1–26

    Chapter  Google Scholar 

  • Hing KA, Annaz B, Saeed S, Revell PA, Buckland T (2005) Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci Mater Med 16:467–475

    Article  CAS  PubMed  Google Scholar 

  • Igawa K, Mochizuki M, Sugimori O, Shimizu K, Yamazawa K, Kawaguchi H, Nakamura K, Takato T, Nishimura R, Suzuki S, Anzai M, Chung U Il, Sasaki N (2006) Tailor-made tricalcium phosphate bone implant directly fabricated by a three-dimensional ink-jet printer. J Artif Organs 9:234–240

    Article  CAS  PubMed  Google Scholar 

  • Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ISO/ASTM 52900 (2015) Additive manufacturing – general principles – terminology. ISO Central Secretariat, Geneva

    Google Scholar 

  • Jahadakbar A, Shayesteh Moghaddam N, Amerinatanzi A, Dean D, Karaca H, Elahinia M (2016) Finite element simulation and additive manufacturing of stiffness-matched NiTi fixation hardware for mandibular reconstruction surgery. Bioengineering 3:36

    Article  PubMed Central  Google Scholar 

  • Jaiswal AK, Dhumal RV, Ghosh S, Chaudhari P, Nemani H, Soni VP, Vanage GR, Bellare JR (2013) Bone healing evaluation of nanofibrous composite scaffolds in rat calvarial defects: a comparative study. J Biomed Nanotechnol 9:2073–2085

    Article  CAS  PubMed  Google Scholar 

  • Jakus AE, Rutz AL, Jordan SW, Kannan A, Mitchell SM, Yun C, Koube KD, Yoo SC, Whiteley HE, Richter CP, Galiano RD (2016) Hyperelastic bone: A highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial. Science translational medicine 8:358

    Article  CAS  PubMed  Google Scholar 

  • Jakus AE, Ramille S (2017) Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering. J Biomed Mater Res A 105:274–283

    Article  CAS  PubMed  Google Scholar 

  • Ji W, Sun Y, Yang F, Van Den Beucken JJJP, Fan M, Chen Z, Jansen JA (2011) Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm Res 28:1259–1272

    Article  CAS  PubMed  Google Scholar 

  • Keller TS (1994) Predicting the compressive mechanical behavior of bone. J Biomech 27:1159–1168

    Article  CAS  PubMed  Google Scholar 

  • Kelly JR, Nishimura I, Campbell SD (1996) Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent 75:18–32

    Article  CAS  PubMed  Google Scholar 

  • Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York, p 3

    Google Scholar 

  • Kurien T, Pearson RG, Scammell BE (2013) Bone graft substitutes currently available in orthopaedic practice: the evidence for their use. Bone Joint J 95B:583–597

    Article  CAS  Google Scholar 

  • Larsen M, Mishra R, Miller M, Dean D (2015) Bioprinting of bone. In: Atala A, Yoo JJ (eds) Essentials of 3D biofabrication and translation. Academic press (Elsevier), Cambridge, MA, pp 293–308

    Chapter  Google Scholar 

  • Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370:1508–1519

    Article  PubMed  Google Scholar 

  • Li Z, Chen X, Zhao N, Dong H, Li Y, Lin C (2013) Stiff macro-porous bioactive glass-ceramic scaffold: fabrication by rapid prototyping template, characterization and in vitro bioactivity. Mater Chem Phys 141:76–80

    Article  CAS  Google Scholar 

  • Li Y, Chen SK, Li L, Qin L, Wang XL, Lai YX (2015) Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthop Transl 3:95–104

    Google Scholar 

  • Li JJ, Roohani-Esfahani S-I, Dunstan CR, Quach T, Steck R, Saifzadeh S, Pivonka P, Zreiqat H (2016) Efficacy of novel synthetic bone substitutes in the reconstruction of large segmental bone defects in sheep tibiae. Biomed Mater 11:15016

    Article  CAS  Google Scholar 

  • Liu Y, Lim J, Teoh SH (2013) Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 31:688–705

    Article  CAS  PubMed  Google Scholar 

  • Liu W-C, Robu IS, Patel R, Leu MC, Velez M, Gabriel Chu T-M (2014) The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones. Biomed Mater 9(45013)

    Article  CAS  PubMed  Google Scholar 

  • Lohfeld S, Cahill S, Barron V, McHugh P, Dürselen L, Kreja L, Bausewein C, Ignatius A (2012) Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds. Acta Biomater 8:3446–3456

    Article  CAS  Google Scholar 

  • Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13:947–955

    Article  CAS  PubMed  Google Scholar 

  • McColm IJ (2013) Dictionary of ceramic science and engineering. Springer, New York, pp 83–84

    Book  Google Scholar 

  • Metsger DS, Driskell TD, Paulsrud JR (1982) Tricalcium phosphate ceramic – a resorbable bone implant: review and current status. J Am Dent Assoc 105:1035–1038

    Article  CAS  PubMed  Google Scholar 

  • Midha S, Kim TB, Van Den Bergh W, Lee PD, Jones JR, Mitchell CA (2013) Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo. Acta Biomater 9:9169–9182

    Article  CAS  PubMed  Google Scholar 

  • Miranda P, Pajares A, Saiz E, Tomsia AP, Guiberteau F (2008) Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. J Biomed Mater Res A 85:218–227

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam NS, Skoracki R, Miller M, Elahinia M, Dean D (2016a) Three dimensional printing of stiffness-tuned, nitinol skeletal fixation hardware with an example of mandibular segmental defect repair. Procedia CIRP 49:45–50

    Article  Google Scholar 

  • Moghaddam N, Jahadakbar A, Amerinatanzi A, Elahinia M, Miller M, Dean D (2016b) Metallic fixation of mandibular segmental defects. Plast Reconstr Surg Glob Open 4:e858

    Article  Google Scholar 

  • Muller B, Reseland JE, Haugen HJ, Tiainen H (2015) Cell growth on pore-graded biomimetic TiO2 bone scaffolds. J Biomater Appl 29:1284–1295

    Article  CAS  PubMed  Google Scholar 

  • Nandi SK, Kundu B, Datta S, De DK, Basu D (2009) The repair of segmental bone defects with porous bioglass: an experimental study in goat. Res Vet Sci 86:162–173

    Article  CAS  PubMed  Google Scholar 

  • Nie L, Chen D, Fu J, Yang S, Hou R, Suo J (2015) Macroporous biphasic calcium phosphate scaffolds reinforced by poly-L-lactic acid/hydroxyapatite nanocomposite coatings for bone regeneration. Biochem Eng J 98:29–37

    Article  CAS  Google Scholar 

  • Obregon F, Vaquette C, Ivanovski S, Hutmacher DW, Bertassoni LE (2015) Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J Dent Res 94:143S–152S

    Article  CAS  PubMed  Google Scholar 

  • Paderni S, Terzi S, Amendola L (2009) Major bone defect treatment with an osteoconductive bone substitute. Musculoskelet Surg 93:89–96

    Article  Google Scholar 

  • Park HJ, Min KD, Lee MC, Kim SH, Lee OJ, Ju HW, Moon BM, Lee JM, Park YR, Kim DW, Jeong JY, Park CH (2016) Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. J Biomed Mater Res A:1779–1787

    Article  CAS  PubMed  Google Scholar 

  • Pati F, Jang J, Lee JW, Cho D-W (2015) Extrusion bioprinting. In: Atala A, Yoo JJ (eds) Essentials of 3D biofabrication and translation. Academic, Boston, pp 123–152

    Chapter  Google Scholar 

  • Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG (2007) Animal models for implant biomaterial research in bone: a review. Eur Cells Mater 13:1–10

    Article  CAS  Google Scholar 

  • Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20:1–25

    Article  CAS  PubMed  Google Scholar 

  • Pilipchuk SP, Plonka AB, Monje A, Taut AD, Lanis A, Kang B, Giannobile WV (2015) Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater 31:317–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Policastro GM, Lin F, Smith Callahan LA, Esterle A, Graham M, Stakleff KS, Becker ML (2015) OGP functionalized phenylalanine-based poly(ester urea) for enhancing osteoinductive potential of human mesenchymal stem cells. Biomacromolecules 16:1358–1371

    Article  CAS  PubMed  Google Scholar 

  • Pountos I, Giannoudis PV (2016) Is there a role of coral bone substitutes in bone repair? Injury 47:2606–2613

    Article  PubMed  Google Scholar 

  • Qiu K, Chen B, Nie W, Zhou X, Feng W, Wang W, Chen L, Mo X, Wei Y, He C (2016) Electrophoretic deposition of dexamethasone-loaded mesoporous silica nanoparticles onto poly(l-lactic acid)/poly(ε-caprolactone) composite scaffold for bone tissue engineering. ACS Appl Mater Interfaces 8:4137–4148

    Article  CAS  PubMed  Google Scholar 

  • Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386

    Article  CAS  PubMed  Google Scholar 

  • Raman R, Bashir R (2015) Stereolithographic 3D bioprinting for biomedical applications. In: Atala A, Yoo JJ (eds) Essentials of 3D biofabrication and translation. Academic press (Elsevier), Cambridge, MA, pp 89–121

    Chapter  Google Scholar 

  • Reichert JC, Wullschleger ME, Cipitria A, Lienau J, Cheng TK, Schütz MA, Duda GN, Nöth U, Eulert J, Hutmacher DW (2011) Custom-made composite scaffolds for segmental defect repair in long bones. Int Orthop 35:1229–1236

    Article  PubMed  Google Scholar 

  • Ren J, Blackwood KA, Doustgani A, Poh PP, Steck R, Stevens MM, Woodruff MA (2014) Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration. J Biomed Mater Res A 102:3140–3153

    Article  CAS  PubMed  Google Scholar 

  • Schmitz JP, Hollinger JO (1986) The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 205:299–308

    Google Scholar 

  • Semlitsch M, Lehmann M, Weber H, Doerre E, Willert HG (1977) New prospects for a prolonged functional lifespan of artificial hip joints by using the material combination polyethylene/aluminium oxide ceramic/metal. J Biomed Mater Res 11:537–552

    Article  CAS  PubMed  Google Scholar 

  • Shao H, He Y, Fu J, He D, Yang X, Xie J, Yao C, Ye J, Xu S, Gou Z (2016) 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation. J Eur Ceram Soc 36:1495–1503

    Article  CAS  Google Scholar 

  • Shrivats AR, Alvarez P, Schutte L, Hollinger JO (2014) Bone regeneration. In: Principles of tissue engineering. Elsevier, San Diego, pp 1201–1221

    Chapter  Google Scholar 

  • Sing SL, Yeong WY, Wiria FE, Tay BY, Zhao Z, Zhao L, Tian Z, Yang S (2017) Direct selective laser sintering and melting of ceramics: a review. Rapid Prototyp J 23:611–623

    Article  Google Scholar 

  • Sun M, Liu A, Shao H, Yang X, Ma C, Yan S, Liu Y, He Y, Gou Z (2016) Systematical evaluation of mechanically strong 3d printed diluted magnesium doping wollastonite scaffolds on osteogenic capacity in rabbit calvarial defects. Sci Rep 6:34029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamjid E, Simchi A (2015) Fabrication of a highly ordered hierarchically designed porous nanocomposite via indirect 3D printing: mechanical properties and in vitro cell responses. Mater Des 88:924–931

    Article  CAS  Google Scholar 

  • Tang W, Policastro GM, Hua G, Guo K, Zhou J, Wesdemiotis C, Doll GL, Becker ML (2014) Bioactive surface modification of metal oxides via catechol-bearing modular peptides: multivalent-binding, surface retention, and peptide bioactivity. J Am Chem Soc 136:16357–16367

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Lin D, Yu Y, Niu H, Guo H, Yuan Y, Liu C (2016) Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomater 32:309–323

    Article  CAS  PubMed  Google Scholar 

  • Tarafder S, Balla VK, Davies NM, Bandyopadhyay A, Bose S (2013) Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regen Med 7:631–641

    Article  CAS  Google Scholar 

  • Tesavibul P, Felzmann R, Gruber S, Liska R, Thompson I, Boccaccini AR, Stampfl J (2012) Processing of 45S5 Bioglass® by lithography-based additive manufacturing. Mater Lett 74:81–84

    Article  CAS  Google Scholar 

  • Vivanco J, Aiyangar A, Araneda A, Ploeg HL (2012) Mechanical characterization of injection-molded macro porous bioceramic bone scaffolds. J Mech Behav Biomed Mater 9:137–152

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L (2007) Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28:3338–3348

    Article  CAS  PubMed  Google Scholar 

  • Woodruff MA, Lange C, Reichert J, Berner A, Chen F, Fratzl P, Schantz JT, Hutmacher DW (2012) Bone tissue engineering: from bench to bedside. Mater Today 15:430–435

    Article  CAS  Google Scholar 

  • Xu Y, Luong D, Walker JM, Dean D, Becker ML (2017) Modification of poly (propylene fumarate) – bioglass composites with peptide conjugates to enhance bioactivity. Biomacromolecules 18:3168–3177

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas AMC, de Ruiter A, Walsh WR, van Blitterswijk CA, de Bruijn JD (2010) Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci USA 107:13614–13619

    Article  PubMed  Google Scholar 

  • Zanchetta E, Cattaldo M, Franchin G, Schwentenwein M, Homa J, Brusatin G, Colombo P (2016) Stereolithography of SiOC ceramic microcomponents. Adv Mater 28:370–376

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu H, Ding J-X, Wu J, Zhuang X-L, Chen X-S, Wang J-C, Yin J-B, Li Z-M (2016) High-pressure compression-molded porous resorbable polymer/hydroxyapatite composite scaffold for cranial bone regeneration. ACS Biomater Sci Eng 2:1471–1482

    Article  CAS  Google Scholar 

  • Zhou C, Ye X, Fan Y, Ma L, Tan Y, Qing F, Zhang X (2014) Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering. Biofabrication 6:35013

    Article  CAS  Google Scholar 

  • Zocca A, Colombo P, Gomes CM, Günster J (2015) Additive manufacturing of ceramics: issues, potentialities, and opportunities. J Am Ceram Soc 98:1983–2001

    Article  CAS  Google Scholar 

  • Zoetis T, Tassinari MS, Bagi C, Walthall K, Hurtt ME (2003) Species comparison of postnatal bone growth and development. Birth Defects Res B Dev Reprod Toxicol 68:86–110

    Article  CAS  PubMed  Google Scholar 

  • Zreiqat H, Ramaswamy Y, Wu C, Paschalidis A, Lu Z, James B, Birke O, McDonald M, Little D, Dunstan CR (2010) The incorporation of strontium and zinc into a calcium-silicon ceramic for bone tissue engineering. Biomaterials 31:3175–3184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge partial support from the Army, Navy, NIH, Air Force, VA, and Health Affairs to support the AFIRM II effort under award No. W81XWH-14-2-0004. The US Army Medical Research Acquisition Activity is the awarding and administering acquisition office for award No. W81XWH-14-2-0004. Partial support was also provided by a Third Frontier (State of Ohio) Technology Validation and Startup Fund (TVSF) grant #15-791 grant, CONACyT grant #DCI from the Government of Mexico to Hernan Lara Padilla, and CONACyT #grant #274867 from the Mexican Government to Ciro A. Rodriguez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Dean .

Editor information

Editors and Affiliations

Appendix

Appendix

See Tables A.1 to A.3.

Table A.1 Molding processes for bioceramic-based scaffolds (selected studies with in vivo testing)
Table A.2 Additive manufacturing processes for bioceramic-based scaffolds (selected studies with in vivo testing)
Table A.3 Coatings for bioceramic-based for scaffolds (selected studies with in vivo testing)

Glossary

3DP

Inkjet printing (type of additive manufacturing process)

BCP

Biphasic calcium phosphate

BG

Bioactive glass

CaP

Calcium phosphate

CSF

Calcium sulfate (CaSO4)

DCS

Dicalcium silicate (Ca2SiO4)

DIW

Direct ink writing/robocasting (type of additive manufacturing process)

DLP

Digital light processing (type of additive manufacturing process)

DMD

Direct micromirror device (type of additive manufacturing process)

ELS

Electrospinning (type of additive manufacturing process)

FDM

Fused deposition modeling (type of additive manufacturing process)

HAP

Hydroxyapatite

LDM

Low-temperature deposition modeling (type of additive manufacturing process)

MES

Melt electrospinning (type of additive manufacturing process)

nHA

Nano-hydroxyapatite

OCP

Octacalcium phosphate (Ca8H2(PO4)6·5H2O)

PA

Polyamide

PAD

Pressure assisted dispensing (type of additive manufacturing process)

PCL

Polycaprolactone

PED

Precision extruding deposition (type of additive manufacturing process)

PLA

Polylactide acid

PLDLLA

Poly(L-lactide-co-D,L-lactide)

PPF

Poly(propylene fumarate)

SLA

Stereolithography (type of additive manufacturing process)

SLM

Selective laser melting (type of additive manufacturing process)

SLS

Selective laser sintering (type of additive manufacturing process)

Slide

In the design of injection molds, slides are moving components

Sr-HT

Sr-hardystonite (Sr-Ca2ZnSi2O7)

TCP

Tricalcium phosphate

TTCP

Tetracalcium phosphate (Ca4(PO4)2O)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rodriguez, C.A., Lara-Padilla, H., Dean, D. (2018). Bioceramics for Musculoskeletal Regenerative Medicine: Materials and Manufacturing Process Compatibility for Synthetic Bone Grafts and Medical Devices. In: Ovsianikov, A., Yoo, J., Mironov, V. (eds) 3D Printing and Biofabrication. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-45444-3_22

Download citation

Publish with us

Policies and ethics