Skip to main content

Non-thyroidal Illness

  • Reference work entry
  • First Online:
Thyroid Diseases

Part of the book series: Endocrinology ((ENDOCR))

Abstract

The non-thyroidal illness syndrome (NTIS) is a term used to describe alterations in thyroid function tests observed in critically ill patients in the absence of intrinsic thyroid disease. Several studies have demonstrated that it has a high prevalence among hospitalized patients and it is significantly associated with the severity and the outcome of the disease. In the last decades there has been a shift in our view of the pathogenetic mechanisms underlying the syndrome. It has been increasingly recognized that alterations in the hypothalamus and the pituitary play a predominant role in the pathogenesis of NTIS, whereas the contribution of peripheral pathways, such as deiodinase activity, does not seem to be as significant as considered in the past. The majority of studies agree that treatment with thyroid hormone (TH) is not beneficial. However, TH may be reserved as an option for high-risk patients with very low TH levels and protracted disease, in whom some degree of hypothyroidism may be present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acker CG, Singh AR, Flick RP, Bernardini J, Greenberg A, Johnson JP. A trial of thyroxine in acute renal failure. Kidney Int. 2000;57(1):293–8.

    Article  CAS  PubMed  Google Scholar 

  • Afandi B, Schussler GC, Arafeh AH, Boutros A, Yap MG, Finkelstein A. Selective consumption of thyroxine-binding globulin during cardiac bypass surgery. Metabolism. 2000;49(2):270–4.

    Article  CAS  PubMed  Google Scholar 

  • Alevizaki M, Synetou M, Xynos K, Pappa T, Vemmos KN. Low triiodothyronine: a strong predictor of outcome in acute stroke patients. Eur J Clin Investig. 2007;37(8):651–7.

    Article  CAS  Google Scholar 

  • Alexopoulou O, Beguin C, De Nayer P, Maiter D. Clinical and hormonal characteristics of central hypothyroidism at diagnosis and during follow-up in adult patients. Eur J Endocrinol. 2004;150(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  • Alkemade A, Unmehopa UA, Wiersinga WM, Swaab DF, Fliers E. Glucocorticoids decrease thyrotropin-releasing hormone messenger ribonucleic acid expression in the paraventricular nucleus of the human hypothalamus. J Clin Endocrinol Metab. 2005;90(1):323–7.

    Article  CAS  PubMed  Google Scholar 

  • Andersen S, Pedersen KM, Bruun NH, Laurberg P. Narrow individual variations in serum T(4) and T(3) in normal subjects: a clue to the understanding of subclinical thyroid disease. J Clin Endocrinol Metab. 2002;87(3):1068–72.

    Article  CAS  PubMed  Google Scholar 

  • Arrojo EDR, Bianco AC. Type 2 deiodinase at the crossroads of thyroid hormone action. Int J Biochem Cell Biol. 2011;43(10):1432–41.

    Article  CAS  Google Scholar 

  • Bayer MF. Effect of heparin on serum free thyroxine linked to post-heparin lipolytic activity. Clin Endocrinol. 1983;19(5):591–6.

    Article  CAS  Google Scholar 

  • Beck-Peccoz P, Mariotti S. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, et al., editors. Physiology of the hypothalamic-pituitary-thyroid axis. South Dartmouth: Endotext; 2000.

    Google Scholar 

  • Bennett-Guerrero E, Jimenez JL, White WD, D’Amico EB, Baldwin BI, Schwinn DA. Cardiovascular effects of intravenous triiodothyronine in patients undergoing coronary artery bypass graft surgery. A randomized, double-blind, placebo- controlled trial. Duke T3 study group. JAMA. 1996;275(9):687–92.

    Article  CAS  PubMed  Google Scholar 

  • Berger MM, Reymond MJ, Shenkin A, Rey F, Wardle C, Cayeux C, et al. Influence of selenium supplements on the post-traumatic alterations of the thyroid axis: a placebo-controlled trial. Intensive Care Med. 2001;27(1):91–100.

    Article  CAS  PubMed  Google Scholar 

  • Bianco AC, Kim BW. Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest. 2006;116(10):2571–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boelen A, Kwakkel J, Thijssen-Timmer DC, Alkemade A, Fliers E, Wiersinga WM. Simultaneous changes in central and peripheral components of the hypothalamus-pituitary-thyroid axis in lipopolysaccharide-induced acute illness in mice. J Endocrinol. 2004;182(2):315–23.

    Article  CAS  PubMed  Google Scholar 

  • Boelen A, Kwakkel J, Vos XG, Wiersinga WM, Fliers E. Differential effects of leptin and refeeding on the fasting-induced decrease of pituitary type 2 deiodinase and thyroid hormone receptor beta2 mRNA expression in mice. J Endocrinol. 2006;190(2):537–44.

    Article  CAS  PubMed  Google Scholar 

  • Boelen A, Boorsma J, Kwakkel J, Wieland CW, Renckens R, Visser TJ, et al. Type 3 deiodinase is highly expressed in infiltrating neutrophilic granulocytes in response to acute bacterial infection. Thyroid. 2008;18(10):1095–103.

    Article  CAS  PubMed  Google Scholar 

  • Boelen A, Kwakkel J, Fliers E. Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection. Endocr Rev. 2011;32(5):670–93.

    Article  CAS  PubMed  Google Scholar 

  • Boelen A, van Beeren M, Vos X, Surovtseva O, Belegri E, Saaltink DJ, et al. Leptin administration restores the fasting-induced increase of hepatic type 3 deiodinase expression in mice. Thyroid. 2012;22(2):192–9.

    Article  CAS  PubMed  Google Scholar 

  • Bornstein SR, Torpy DJ, Chrousos GP, Licinio J, Engelmann L. Leptin levels are elevated despite low thyroid hormone levels in the “euthyroid sick” syndrome. J Clin Endocrinol Metab. 1997;82(12):4278–9.

    PubMed  CAS  Google Scholar 

  • Brabant A, Brabant G, Schuermeyer T, Ranft U, Schmidt FW, Hesch RD, et al. The role of glucocorticoids in the regulation of thyrotropin. Acta Endocrinol. 1989;121(1):95–100.

    Article  PubMed  CAS  Google Scholar 

  • Brent GA. Mechanisms of thyroid hormone action. J Clin Invest. 2012;122(9):3035–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brent GA, Hershman JM. Thyroxine therapy in patients with severe nonthyroidal illnesses and low serum thyroxine concentration. J Clin Endocrinol Metab. 1986;63(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  • Burger A, Nicod P, Suter P, Vallotton MB, Vagenakis P, Braverman L. Reduced active thyroid hormone levels in acute illness. Lancet. 1976;1(7961):653–5.

    Article  CAS  PubMed  Google Scholar 

  • Chopra IJ. Simultaneous measurement of free thyroxine and free 3,5,3′-triiodothyronine in undiluted serum by direct equilibrium dialysis/radioimmunoassay: evidence that free triiodothyronine and free thyroxine are normal in many patients with the low triiodothyronine syndrome. Thyroid. 1998;8(3):249–57.

    Article  CAS  PubMed  Google Scholar 

  • Chopra IJ, Teco GN, Mead JF, Huang TS, Beredo A, Solomon DH. Relationship between serum free fatty acids and thyroid hormone binding inhibitor in nonthyroid illnesses. J Clin Endocrinol Metab. 1985;60(5):980–4.

    Article  CAS  PubMed  Google Scholar 

  • den Brinker M, Joosten KF, Visser TJ, Hop WC, de Rijke YB, Hazelzet JA, et al. Euthyroid sick syndrome in meningococcal sepsis: the impact of peripheral thyroid hormone metabolism and binding proteins. J Clin Endocrinol Metab. 2005;90(10):5613–20.

    Article  CAS  Google Scholar 

  • De Groot LJ. Non-thyroidal illness syndrome is a manifestation of hypothalamic-pituitary dysfunction, and in view of current evidence, should be treated with appropriate replacement therapies. Crit Care Clin. 2006;22(1):57–86.vi.

    Article  PubMed  Google Scholar 

  • de Vries EM, Fliers E, Boelen A. The molecular basis of the non-thyroidal illness syndrome. J Endocrinol. 2015;225(3):R67–81.

    Article  CAS  PubMed  Google Scholar 

  • Escobar-Morreale HF, Obregon MJ, Hernandez A, Escobar del Rey F, Morreale de Escobar G. Regulation of iodothyronine deiodinase activity as studied in thyroidectomized rats infused with thyroxine or triiodothyronine. Endocrinology. 1997;138(6):2559–68.

    Article  CAS  PubMed  Google Scholar 

  • Everts ME, de Jong M, Lim CF, Docter R, Krenning EP, Visser TJ, et al. Different regulation of thyroid hormone transport in liver and pituitary: its possible role in the maintenance of low T3 production during nonthyroidal illness and fasting in man. Thyroid. 1996;6(4):359–68.

    Article  CAS  PubMed  Google Scholar 

  • Fekete C, Lechan RM. Negative feedback regulation of hypophysiotropic thyrotropin-releasing hormone (TRH) synthesizing neurons: role of neuronal afferents and type 2 deiodinase. Front Neuroendocrinol. 2007;28(2–3):97–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fekete C, Lechan RM. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev. 2014;35(2):159–94.

    Article  CAS  PubMed  Google Scholar 

  • Fekete C, Gereben B, Doleschall M, Harney JW, Dora JM, Bianco AC, et al. Lipopolysaccharide induces type 2 iodothyronine deiodinase in the mediobasal hypothalamus: implications for the nonthyroidal illness syndrome. Endocrinology. 2004;145(4):1649–55.

    Article  CAS  PubMed  Google Scholar 

  • Fekete C, Sarkar S, Christoffolete MA, Emerson CH, Bianco AC, Lechan RM. Bacterial lipopolysaccharide (LPS)-induced type 2 iodothyronine deiodinase (D2) activation in the mediobasal hypothalamus (MBH) is independent of the LPS-induced fall in serum thyroid hormone levels. Brain Res. 2005;1056(1):97–9.

    Article  CAS  PubMed  Google Scholar 

  • Fliers E, Guldenaar SE, Wiersinga WM, Swaab DF. Decreased hypothalamic thyrotropin-releasing hormone gene expression in patients with nonthyroidal illness. J Clin Endocrinol Metab. 1997;82(12):4032–6.

    PubMed  CAS  Google Scholar 

  • Forestier E, Vinzio S, Sapin R, Schlienger JL, Goichot B. Increased reverse triiodothyronine is associated with shorter survival in independently-living elderly: the Alsanut study. Eur J Endocrinol. 2009;160(2):207–14.

    Article  CAS  PubMed  Google Scholar 

  • Gerard AC, Boucquey M, van den Hove MF, Colin IM. Expression of TPO and ThOXs in human thyrocytes is downregulated by IL-1alpha/IFN-gamma, an effect partially mediated by nitric oxide. Am J Physiol Endocrinol Metab. 2006;291(2):E242–53.

    Article  CAS  PubMed  Google Scholar 

  • Hampton J. Thyroid gland disorder emergencies: thyroid storm and myxedema coma. AACN Adv Crit Care. 2013;24(3):325–32.

    Article  PubMed  Google Scholar 

  • Hansen PS, Brix TH, Sorensen TI, Kyvik KO, Hegedus L. Major genetic influence on the regulation of the pituitary-thyroid axis: a study of healthy Danish twins. J Clin Endocrinol Metab. 2004;89(3):1181–7.

    Article  CAS  PubMed  Google Scholar 

  • Harris AR, Fang SL, Azizi F, Lipworth L, Vagenakis AG, Barverman LE. Effect of starvation on hypothalamic-pituitary-thyroid function in the rat. Metabolism. 1978;27(9):1074–83.

    Article  CAS  PubMed  Google Scholar 

  • Haugen BR. Drugs that suppress TSH or cause central hypothyroidism. Best Pract Res Clin Endocrinol Metab. 2009;23(6):793–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen R, Zuidwijk MJ, Muller A, van Mil A, Dirkx E, Oudejans CB, et al. MicroRNA 214 is a potential regulator of thyroid hormone levels in the mouse heart following myocardial infarction, by targeting the thyroid-hormone-inactivating enzyme deiodinase type III. Front Endocrinol (Lausanne). 2016;7:22.

    Google Scholar 

  • Jirasakuldech B, Schussler GC, Yap MG, Drew H, Josephson A, Michl J. A characteristic serpin cleavage product of thyroxine-binding globulin appears in sepsis sera. J Clin Endocrinol Metab. 2000;85(11):3996–9.

    Article  CAS  PubMed  Google Scholar 

  • Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, et al. Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association Task Force on thyroid hormone replacement. Thyroid. 2014;24(12):1670–751.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaptein EM, Robinson WJ, Grieb DA, Nicoloff JT. Peripheral serum thyroxine, triiodothyronine and reverse triiodothyronine kinetics in the low thyroxine state of acute nonthyroidal illnesses. A noncompartmental analysis. J Clin Invest. 1982;69(3):526–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwakkel J, Chassande O, van Beeren HC, Wiersinga WM, Boelen A. Lacking thyroid hormone receptor beta gene does not influence alterations in peripheral thyroid hormone metabolism during acute illness. J Endocrinol. 2008;197(1):151–8.

    Article  CAS  PubMed  Google Scholar 

  • Kwakkel J, van Beeren HC, Ackermans MT, Platvoet-Ter Schiphorst MC, Fliers E, Wiersinga WM, et al. Skeletal muscle deiodinase type 2 regulation during illness in mice. J Endocrinol. 2009;203(2):263–70.

    Article  CAS  PubMed  Google Scholar 

  • Larsen PR. Salicylate-induced increases in free triiodothyronine in human serum. Evidence of inhibition of triiodothyronine binding to thyroxine-binding globulin and thyroxine-binding prealbumin. J Clin Invest. 1972;51(5):1125–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CF, Docter R, Visser TJ, Krenning EP, Bernard B, van Toor H, et al. Inhibition of thyroxine transport into cultured rat hepatocytes by serum of nonuremic critically ill patients: effects of bilirubin and nonesterified fatty acids. J Clin Endocrinol Metab. 1993;76(5):1165–72.

    PubMed  CAS  Google Scholar 

  • Marks SD. Nonthyroidal illness syndrome in children. Endocrine. 2009;36(3):355–67.

    Article  CAS  PubMed  Google Scholar 

  • McKeown DW, Bonser RS, Kellum JA. Management of the heartbeating brain-dead organ donor. Br J Anaesth. 2012;108(Suppl 1):i96–107.

    Article  PubMed  Google Scholar 

  • Mebis L, Langouche L, Visser TJ, Van den Berghe G. The type II iodothyronine deiodinase is up-regulated in skeletal muscle during prolonged critical illness. J Clin Endocrinol Metab. 2007;92(8):3330–3.

    Article  CAS  PubMed  Google Scholar 

  • Mebis L, Paletta D, Debaveye Y, Ellger B, Langouche L, D’Hoore A, et al. Expression of thyroid hormone transporters during critical illness. Eur J Endocrinol. 2009a;161(2):243–50.

    Article  CAS  PubMed  Google Scholar 

  • Mebis L, Debaveye Y, Ellger B, Derde S, Ververs EJ, Langouche L, et al. Changes in the central component of the hypothalamus-pituitary-thyroid axis in a rabbit model of prolonged critical illness. Crit Care. 2009b;13(5):R147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller J, Carney P. Central hypothyroidism with oxcarbazepine therapy. Pediatr Neurol. 2006;34(3):242–4.

    Article  PubMed  Google Scholar 

  • Moshage H. Cytokines and the hepatic acute phase response. J Pathol. 1997;181(3):257–66.

    Article  CAS  PubMed  Google Scholar 

  • Novitzky D, Mi Z, Sun Q, Collins JF, Cooper DK. Thyroid hormone therapy in the management of 63,593 brain-dead organ donors: a retrospective analysis. Transplantation. 2014;98(10):1119–27.

    Article  CAS  PubMed  Google Scholar 

  • Oetting A, Yen PM. New insights into thyroid hormone action. Best Pract Res Clin Endocrinol Metab. 2007;21(2):193–208.

    Article  CAS  PubMed  Google Scholar 

  • Ohzeki T, Hanaki K, Motozumi H, Ohtahara H, Ishitani N, Urashima H, et al. Efficacy of bromocriptine administration for selective pituitary resistance to thyroid hormone. Horm Res. 1993;39(5–6):229–34.

    Article  CAS  PubMed  Google Scholar 

  • Osborn DA, Hunt RW. Prophylactic postnatal thyroid hormones for prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2007;1:CD005948.

    Google Scholar 

  • Pappa TA, Vagenakis AG, Alevizaki M. The nonthyroidal illness syndrome in the non-critically ill patient. Eur J Clin Investig. 2011;41(2):212–20.

    Article  CAS  Google Scholar 

  • Peeters RP, Wouters PJ, Kaptein E, van Toor H, Visser TJ, Van den Berghe G. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab. 2003;88(7):3202–11.

    Article  CAS  PubMed  Google Scholar 

  • Peeters RP, van der Geyten S, Wouters PJ, Darras VM, van Toor H, Kaptein E, et al. Tissue thyroid hormone levels in critical illness. J Clin Endocrinol Metab. 2005;90(12):6498–507.

    Article  CAS  PubMed  Google Scholar 

  • Pingitore A, Galli E, Barison A, Iervasi A, Scarlattini M, Nucci D, et al. Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J Clin Endocrinol Metab. 2008;93(4):1351–8.

    Article  CAS  PubMed  Google Scholar 

  • Plikat K, Langgartner J, Buettner R, Bollheimer LC, Woenckhaus U, Scholmerich J, et al. Frequency and outcome of patients with nonthyroidal illness syndrome in a medical intensive care unit. Metabolism. 2007;56(2):239–44.

    Article  CAS  PubMed  Google Scholar 

  • van der Poll T, Van Zee KJ, Endert E, Coyle SM, Stiles DM, Pribble JP, et al. Interleukin-1 receptor blockade does not affect endotoxin-induced changes in plasma thyroid hormone and thyrotropin concentrations in man. J Clin Endocrinol Metab. 1995;80(4):1341–6.

    PubMed  Google Scholar 

  • Portman MA, Slee A, Olson AK, Cohen G, Karl T, Tong E, et al. Triiodothyronine Supplementation in Infants and Children Undergoing Cardiopulmonary Bypass (TRICC): a multicenter placebo-controlled randomized trial: age analysis. Circulation. 2010;122(11 Suppl):S224–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Perez A, Palos-Paz F, Kaptein E, Visser TJ, Dominguez-Gerpe L, Alvarez-Escudero J, et al. Identification of molecular mechanisms related to nonthyroidal illness syndrome in skeletal muscle and adipose tissue from patients with septic shock. Clin Endocrinol. 2008;68(5):821–7.

    Article  CAS  Google Scholar 

  • Rothwell PM, Lawler PG. Prediction of outcome in intensive care patients using endocrine parameters. Crit Care Med. 1995;23(1):78–83.

    Article  CAS  PubMed  Google Scholar 

  • Sacca L. Heart failure as a multiple hormonal deficiency syndrome. Circ Heart Fail. 2009;2(2):151–6.

    Article  PubMed  Google Scholar 

  • Samuels MH, Henry P, Ridgway EC. Effects of dopamine and somatostatin on pulsatile pituitary glycoprotein secretion. J Clin Endocrinol Metab. 1992;74(1):217–22.

    PubMed  CAS  Google Scholar 

  • Schneider MJ, Fiering SN, Thai B, Wu SY, St Germain E, Parlow AF, et al. Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology. 2006;147(1):580–9.

    Article  CAS  PubMed  Google Scholar 

  • Schonberger W, Grimm W, Emmrich P, Gempp W. Thyroid administration lowers mortality in premature infants. Lancet. 1979;2(8153):1181.

    Article  CAS  PubMed  Google Scholar 

  • Schulman RC, Mechanick JI. Metabolic and nutrition support in the chronic critical illness syndrome. Respir Care. 2012;57(6):958–77. discussion 77-8.

    Article  PubMed  Google Scholar 

  • Simonides WS, Mulcahey MA, Redout EM, Muller A, Zuidwijk MJ, Visser TJ, et al. Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J Clin Invest. 2008;118(3):975–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Spratt DI, Frohnauer M, Cyr-Alves H, Kramer RS, Lucas FL, Morton JR, et al. Physiological effects of nonthyroidal illness syndrome in patients after cardiac surgery. Am J Physiol Endocrinol Metab. 2007;293(1):E310–5.

    Article  CAS  PubMed  Google Scholar 

  • Tang KT, Braverman LE, DeVito WJ. Tumor necrosis factor-alpha and interferon-gamma modulate gene expression of type I 5′-deiodinase, thyroid peroxidase, and thyroglobulin in FRTL-5 rat thyroid cells. Endocrinology. 1995;136(3):881–8.

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama A, Kushima R, Watanabe T, Kusuda S. Effect of l-thyroxine supplementation on infants with transient hypothyroxinemia of prematurity at 18 months of corrected age: randomized clinical trial. J Pediatr Endocrinol Metab. 2015;28(1–2):177–82.

    PubMed  CAS  Google Scholar 

  • Van den Berghe G. Non-thyroidal illness in the ICU: a syndrome with different faces. Thyroid. 2014;24(10):1456–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van den Berghe G, Wouters P, Weekers F, Mohan S, Baxter RC, Veldhuis JD, et al. Reactivation of pituitary hormone release and metabolic improvement by infusion of growth hormone-releasing peptide and thyrotropin-releasing hormone in patients with protracted critical illness. J Clin Endocrinol Metab. 1999;84(4):1311–23.

    PubMed  Google Scholar 

  • Van den Berghe G, Baxter RC, Weekers F, Wouters P, Bowers CY, Iranmanesh A, et al. The combined administration of GH-releasing peptide-2 (GHRP-2), TRH and GnRH to men with prolonged critical illness evokes superior endocrine and metabolic effects compared to treatment with GHRP-2 alone. Clin Endocrinol. 2002;56(5):655–69.

    Article  Google Scholar 

  • Vella KR, Ramadoss P, Lam FS, Harris JC, Ye FD, Same PD, et al. NPY and MC4R signaling regulate thyroid hormone levels during fasting through both central and peripheral pathways. Cell Metab. 2011;14(6):780–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigersky RA, Filmore-Nassar A, Glass AR. Thyrotropin suppression by metformin. J Clin Endocrinol Metab. 2006;91(1):225–7.

    Article  CAS  PubMed  Google Scholar 

  • Wajner SM, Goemann IM, Bueno AL, Larsen PR, Maia AL. IL-6 promotes nonthyroidal illness syndrome by blocking thyroxine activation while promoting thyroid hormone inactivation in human cells. J Clin Invest. 2011;121(5):1834–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walley AJ, Asher JE, Froguel P. The genetic contribution to non-syndromic human obesity. Nat Rev Genet. 2009;10(7):431–42.

    Article  CAS  PubMed  Google Scholar 

  • Warner MH, Beckett GJ. Mechanisms behind the non-thyroidal illness syndrome: an update. J Endocrinol. 2010;205(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  • Winther KH, Bonnema SJ, Cold F, Debrabant B, Nybo M, Cold S, et al. Does selenium supplementation affect thyroid function? Results from a randomized, controlled, double-blinded trial in a Danish population. Eur J Endocrinol. 2015;172(6):657–67.

    Article  CAS  PubMed  Google Scholar 

  • Wu SY, Green WL, Huang WS, Hays MT, Chopra IJ. Alternate pathways of thyroid hormone metabolism. Thyroid. 2005;15(8):943–58.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Koenig RJ. Regulation of hepatocyte thyroxine 5′-deiodinase by T3 and nuclear receptor coactivators as a model of the sick euthyroid syndrome. J Biol Chem. 2000;275(49):38296–301.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Koenig RJ. Induction of type 1 iodothyronine deiodinase to prevent the nonthyroidal illness syndrome in mice. Endocrinology. 2006;147(7):3580–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodora Pappa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pappa, T., Alevizaki, M. (2018). Non-thyroidal Illness. In: Vitti, P., Hegedüs, L. (eds) Thyroid Diseases. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-45013-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45013-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45012-4

  • Online ISBN: 978-3-319-45013-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics