Skip to main content

Components and Key Regulatory Steps of Lipid Biosynthesis in Actinomycetes

  • Living reference work entry
  • First Online:

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

The biochemical steps in fatty acid synthesis are highly conserved in bacteria and in most organisms. However, the data provided by the massive genomic sequencing revealed a surprising amount of diversity in the genes, enzymes, and genetic organization of the components responsible for bacterial lipid synthesis, with these differences being even more striking in the order Actinomycetales. Fatty acid biosynthesis is energetically very expensive for the cell; therefore, adjusting the rate of fatty acid synthesis, in order to maintain membrane lipid homeostasis, is a key factor for bacterial survival. Bacteria have evolved sophisticated and diverse mechanisms to finely control the expression of the genes responsible for the synthesis of fatty acids and, in some cases, also by regulating the activity of the pacemaker enzymes. In this chapter we summarize the main components of fatty acid biosynthesis and their regulation in different genera of actinomycetes, highlighting the main differences found between them and also with other bacteria. The main focus has been put into the acyl-CoA carboxylases, the fatty acid synthases, and on the regulatory elements that control these pathways.

This is a preview of subscription content, log in via an institution.

References

  • Alvarez HM (2016) Triacylglycerol and wax ester-accumulating machinery in prokaryotes. Biochimie 120:28–39

    Article  PubMed  CAS  Google Scholar 

  • Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  PubMed  CAS  Google Scholar 

  • Arabolaza A, D’Angelo M, Comba S, Gramajo H (2010) FasR, a novel class of transcriptional regulator, governs the activation of fatty acid biosynthesis genes in Streptomyces coelicolor. Mol Microbiol 78:47–63

    PubMed  CAS  Google Scholar 

  • Astarie-Dequeker C, Le Guyader L, Malaga W et al (2009) Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathog 5(2):e1000289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Athappilly FK, Hendrickson WA (1995) Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing. Structure 3:1407–1419

    Article  PubMed  CAS  Google Scholar 

  • Banerjee A, Dubnau E, Quemard A et al (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230

    Article  PubMed  CAS  Google Scholar 

  • Bazet Lyonnet B, Diacovich L, Gago G et al (2017) Functional reconstitution of the Mycobacterium tuberculosis long-chain acyl-CoA carboxylase from multiple acyl-CoA subunits. FEBS J 284:1110–1125

    Article  PubMed  CAS  Google Scholar 

  • Bendt AK, Burkovski A, Schaffer S et al (2003) Towards a phosphoproteome map of Corynebacterium glutamicum. Proteomics 3:1637–1646

    Article  PubMed  CAS  Google Scholar 

  • Bhatt A, Fujiwara N, Bhatt K et al (2007) Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci USA 104:5157–5162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Biswas RK, Dutta D, Tripathi A et al (2013) Identification and characterization of Rv0494: a fatty acid-responsive protein of the GntR/FadR family from Mycobacterium tuberculosis. Microbiology 159:913–923

    Article  PubMed  CAS  Google Scholar 

  • Blanchard CZ, Chapman-Smith A, Wallace JC, Waldrop GL (1999) The biotin domain peptide from the biotin carboxyl carrier protein of Escherichia coli acetyl-CoA carboxylase causes a marked increase in the catalytic efficiency of biotin carboxylase and carboxyltransferase relative to free biotin. J Biol Chem 274:31767–31769

    Article  PubMed  CAS  Google Scholar 

  • Boehringer D, Ban N, Leibundgut M (2013) 7.5-Å cryo-EM structure of the mycobacterial fatty acid synthase. J Mol Biol 425:841–849

    Article  PubMed  CAS  Google Scholar 

  • Borgaro JG, Chang A, Machutta CA et al (2011) Substrate recognition by β-ketoacyl-ACP synthases. Biochemistry 50:10678–10686

    Article  PubMed  CAS  Google Scholar 

  • Brennan PJ (2003) Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis 83:91–97

    Article  PubMed  CAS  Google Scholar 

  • Brignole EJ, Smith S, Asturias FJ (2009) Conformational flexibility of metazoan fatty acid synthase enables catalysis. Nat Struct Mol Biol 16:190–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown AK, Sridharan S, Kremer L et al (2005) Probing the mechanism of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III mt FabH: factors influencing catalysis and substrate specificity. J Biol Chem 280:32539–32547

    Article  PubMed  CAS  Google Scholar 

  • Cabruja M, Mondino S, Tsai YT et al (2017) A conditional mutant of the fatty acid synthase unveils unexpected cross talks in mycobacterial lipid metabolism. Open Biol 7(2):160277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Camacho LR, Ensergueix D, Perez E et al (1999) Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34:257–267

    Article  PubMed  CAS  Google Scholar 

  • Chiaradia L, Lefebvre C, Parra J et al (2017) Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci Rep 7:12807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chopra T, Gokhale RS (2009) Polyketide versatility in the biosynthesis of complex mycobacterial cell wall lipids. Methods Enzymol 459:259–94.

    Google Scholar 

  • Ciccarelli L, Connell SR, Enderle M et al (2013) Structure and conformational variability of the Mycobacterium tuberculosis fatty acid synthase multienzyme complex. Structure 21:1251

    Article  PubMed  CAS  Google Scholar 

  • Comba S, Menendez-Bravo S, Arabolaza A, Gramajo H (2013) Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor. Microb Cell Fact 12:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cox JS, Chen B, McNeil M, Jacobs WR Jr (1999) Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402:79–83

    Article  PubMed  CAS  Google Scholar 

  • Cronan JE (2001) The biotinyl domain of Escherichia coli acetyl-CoA carboxylase. J Biol Chem 276:37355–37364

    Article  PubMed  CAS  Google Scholar 

  • Cronan JE Jr, Subrahmanyam S (1998) FadR, transcriptional co-ordination of metabolic expediency. Mol Microbiol 29:937–943

    Article  PubMed  CAS  Google Scholar 

  • Cronan JE Jr, Waldrop GL (2002) Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res 41:407–435

    Article  PubMed  CAS  Google Scholar 

  • Daffe M (2008) The global architecture of the mycobacterial cell envelope. In: Daffé M, Reyrat JM (eds) The mycobacterial cell envelope. ASM Press, Washington, DC, pp 3–11

    Chapter  Google Scholar 

  • Daffe M, Draper P (1998) The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203

    Article  PubMed  CAS  Google Scholar 

  • Daffé M, Crick DC, Jackson M (2014) Genetics of capsular polysaccharides and cell envelope (glyco)lipids. Microbiol Spectr 2:MGM2-0021-2013

    Article  PubMed  CAS  Google Scholar 

  • Daniel J, Oh TJ, Lee CM, Kolattukudy PE (2007) AccD6, a member of the Fas II locus, is a functional carboxyltransferase subunit of the acyl-coenzyme A carboxylase in Mycobacterium tuberculosis. J Bacteriol 189:911–917

    Article  PubMed  CAS  Google Scholar 

  • Das A, Khosla C (2009) Biosynthesis of aromatic polyketides in bacteria. Acc Chem Res 42:631–639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davis MS (2001) Inhibition of Escherichia coli acetyl coenzyme A carboxylase by acyl-acyl carrier protein. J Bacteriol 183:1499–1503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diacovich L, Peiru S, Kurth D et al (2002) Kinetic and structural analysis of a new group of acyl-CoA carboxylases found in Streptomyces coelicolor A3(2). J Biol Chem 277:31228–31236

    Article  PubMed  CAS  Google Scholar 

  • DiRusso CC, Nystrom T (1998) The fats of Escherichia coli during infancy and old age: regulation by global regulators, alarmones and lipid intermediates. Mol Microbiol 27:1–8

    Article  PubMed  CAS  Google Scholar 

  • Florova G, Kazanina G, Reynolds KA (2002) Enzymes involved in fatty acid and polyketide biosynthesis in Streptomyces glaucescens : role of FabH and FabD and their acyl carrier protein specificity. Biochemistry 41:10462–10471

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Matsuoka H, Hirooka K (2007) Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66:829–839

    Article  PubMed  CAS  Google Scholar 

  • Gago G, Kurth D, Diacovich L et al (2006) Biochemical and structural characterization of an essential acyl coenzyme A carboxylase from Mycobacterium tuberculosis. J Bacteriol 188:477–486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gago G, Diacovich L, Arabolaza A et al (2011) Fatty acid biosynthesis in actinomycetes. FEMS Microbiol Rev 35:475–497

    Article  PubMed  CAS  Google Scholar 

  • Gande R, Gibson KJC, Brown AK et al (2004) Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem 279:44847–44857

    Article  PubMed  CAS  Google Scholar 

  • Gande R, Dover LG, Krumbach K et al (2007) The two carboxylases of Corynebacterium glutamicum essential for fatty acid and mycolic acid synthesis. J Bacteriol 189:5257–5264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao LY, Laval F, Lawson EH et al (2003) Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol 49:1547–1563

    Article  PubMed  CAS  Google Scholar 

  • Gastambide O, Lederer E (1960) Biosynthesis of corynomycolic acid from 2 molecules of palmitic acid. Biochem Z 333:285–295

    Google Scholar 

  • Gebhardt H, Meniche X, Tropis M et al (2007) The key role of the mycolic acid content in the functionality of the cell wall permeability barrier in Corynebacterineae. Microbiology 153:1424–1434

    Article  PubMed  CAS  Google Scholar 

  • Gipson P, Mills DJ, Wouts R et al (2010) Direct structural insight into the substrate-shuttling mechanism of yeast fatty acid synthase by electron cryomicroscopy. Proc Natl Acad Sci USA 107:9164–9169

    Article  PubMed  PubMed Central  Google Scholar 

  • Grininger M (2014) Perspectives on the evolution, assembly and conformational dynamics of fatty acid synthase type I (FAS I) systems. Curr Opin Struct Biol 25:49–56

    Article  PubMed  CAS  Google Scholar 

  • Haase FC, Henrikson KP, Treble DH, Allen SHG (1982) The subunit structure and function of the propionyl coenzyme A carboxylase of Mycobacterium smegmatis. J Biol Chem 257:11994–11999

    PubMed  CAS  Google Scholar 

  • Hernandez MA, Comba S, Arabolaza A et al (2015) Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains. Appl Microbiol Biotechnol 99:2191–2207

    Article  PubMed  CAS  Google Scholar 

  • Hernandez M, Lara J, Gago G et al (2017) The pleiotropic transcriptional regulator NlpR contributes to the modulation of nitrogen metabolism, lipogenesis and triacylglycerol accumulation in oleaginous rhodococci. Mol Microbiol 103:366–385

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann C, Leis A, Niederweis M et al (2008) Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A 105:3963–3967

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoischen C, Gura K, Luge C, Gumpert J (1997) Lipid and fatty acid composition of cytoplasmic membranes from Streptomyces hygroscopicus and its stable protoplast-type L form. J Bacteriol 179:3430–3436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hunaiti AR, Kolattukudy PE (1982) Isolation and characterization of an acyl-coenzyme A carboxylase from an erythromycin-producing Streptomyces erythreus. Arch Biochem Biophys 216:362–371

    Article  PubMed  CAS  Google Scholar 

  • Irzik K, van Ooyen J, Gätgens J et al (2014) Acyl-CoA sensing by FasR to adjust fatty acid synthesis in Corynebacterium glutamicum. J Biotechnol 192:96–101

    Article  PubMed  CAS  Google Scholar 

  • Jamet S, Quentin Y, Coudray C et al (2015) Evolution of mycolic acid biosynthesis genes and their regulation during starvation in Mycobacterium tuberculosis. J Bacteriol 197:3797–3811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D et al (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  PubMed  CAS  Google Scholar 

  • Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302

    PubMed  PubMed Central  CAS  Google Scholar 

  • Khan S, Nagarajan SN, Parikh A et al (2010) Phosphorylation of enoyl-acyl carrier protein reductase InhA impacts mycobacterial growth and survival. J Biol Chem 285:37860–37871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kikuchi S, Rainwater DL, Kolattukudy PE (1992) Purification and characterization of an unusually large fatty acid synthase from Mycobacterium tuberculosis var. bovis BCG. Arch Biochem Biophys 295:318–326

    Article  PubMed  CAS  Google Scholar 

  • Kurth DG, Gago GM, de la Iglesia A et al (2009) Accase 6 is the essential acetyl-CoA carboxylase involved in fatty acid and mycolic acid biosynthesis in mycobacteria. Microbiology 155:2664–2675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lane MD, Moss J, Polakis SE (1974) Acetyl coenzyme A carboxylase. Curr Top Cell Regul 8:139–195

    Article  PubMed  CAS  Google Scholar 

  • Lanéelle MA, Tropis M, Daffé M (2013) Current knowledge on mycolic acids in Corynebacterium glutamicum and their relevance for biotechnological processes. Appl Microbiol Biotechnol 97:9923–9930

    Article  PubMed  CAS  Google Scholar 

  • Leibundgut M, Jenni S, Frick C, Ban N (2007) Structural basis for substrate delivery by acyl carrier protein in the yeast fatty acid synthase. Science 316:288–290

    Article  PubMed  CAS  Google Scholar 

  • Leibundgut M, Maier T, Jenni S, Ban N (2008) The multienzyme architecture of eukaryotic fatty acid synthases. Curr Opin Struct Biol 18:714–725

    Article  PubMed  CAS  Google Scholar 

  • Lin TW, Melgar MM, Kurth D et al (2006) Structure-based inhibitor design of AccD5, an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103:3072–3077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lomakin IB, Xiong Y, Steitz TA (2007) The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Cell 129:319–332

    Article  PubMed  Google Scholar 

  • Maier T, Leibundgut M, Ban N (2008) The crystal structure of a mammalian fatty acid synthase. Science 321:1315–1323

    Article  PubMed  CAS  Google Scholar 

  • Manteca A, Alvarez R, Salazar N et al (2008) Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor. Appl Environ Microbiol 74:3877–3886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marrakchi H, Ducasse S, Labesse G et al (2002) MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II. Microbiology 148:951–960

    Article  PubMed  CAS  Google Scholar 

  • Meniche X, Otten R, Siegrist MS et al (2014) Subpolar addition of new cell wall is directed by DivIVA in mycobacteria. Proc Natl Acad Sci USA 111:E3243–E3251

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mo S, Sydor PK, Corre C et al (2008) Elucidation of the Streptomyces coelicolor pathway to 2-undecylpyrrole, a key intermediate in undecylprodiginine and streptorubin B biosynthesis. Chem Biol 15:137–148

    Article  PubMed  CAS  Google Scholar 

  • Molle V, Kremer L (2010) Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way. Mol Microbiol 75:1064–1077

    Article  PubMed  CAS  Google Scholar 

  • Molle V, Brown AK, Besra GS et al (2006) The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by phosphorylation. J Biol Chem 281:30094–30103

    Article  PubMed  CAS  Google Scholar 

  • Mondino S, Gago G, Gramajo H (2013) Transcriptional regulation of fatty acid biosynthesis in mycobacteria. Mol Microbiol 89:372–387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munday MR (2002) Regulation of mammalian acetyl-CoA carboxylase. Biochem Soc Trans 30:1059–1064

    Article  PubMed  CAS  Google Scholar 

  • Nickel J, Irzik K, Van Ooyen J, Eggeling L (2010) The TetR-type transcriptional regulator FasR of Corynebacterium glutamicum controls genes of lipid synthesis during growth on acetate. Mol Microbiol 78:253–265

    PubMed  CAS  Google Scholar 

  • Oh TJ, Daniel J, Kim HJ et al (2006) Identification and characterization of Rv3281 as a novel subunit of a biotin-dependent acyl-CoA carboxylase in Mycobacterium tuberculosis H37Rv. J Biol Chem 281:3899–3908

    Article  PubMed  CAS  Google Scholar 

  • Pawelczyk J, Brzostek A, Kremer L et al (2011) Accd6, a key carboxyltransferase essential for mycolic acid synthesis in Mycobacterium tuberculosis, is dispensable in a nonpathogenic strain. J Bacteriol 193:6960–6972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Polakis SE, Guchhait RB, Lane MD (1973) Stringent control of fatty acid synthesis in Escherichia. J Biol Chem 248:7957–7967

    PubMed  CAS  Google Scholar 

  • Portevin D, De Sousa-D’Auria C, Houssin C et al (2004) A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci USA 101:314–319

    Article  PubMed  CAS  Google Scholar 

  • Portevin D, Auria DS, Montrozier H et al (2005) The Acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth. J Biol Chem 280:8862–8874

    Article  PubMed  CAS  Google Scholar 

  • Puech V, Chami M, Lemassu A et al (2001) Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:1365–1382

    Article  PubMed  CAS  Google Scholar 

  • Quémard A (2016) New insights into the compound biosynthesis and transport in mycobacteria. Trends Microbiol 24:725–738

    Article  PubMed  CAS  Google Scholar 

  • Quemard A, Sacchettini C, Dessen A et al (1995) Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry 34:8235–8241

    Article  PubMed  CAS  Google Scholar 

  • Radmacher E, Alderwick LJ, Besra GS et al (2005) Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum. Microbiology 151:2421–2427

    Article  PubMed  CAS  Google Scholar 

  • Rangan V, Smith S (2003) Fatty acid synthesis in eukaryotes. In: Vance D, Vance J (eds) Biochemistry of lipids, lipoproteins and membranes. Elsevier, Amsterdam, pp 151–179

    Google Scholar 

  • Revill WP, Bibb MJ, Hopwood D (1995) Purification of a malonyltransferase from Streptomyces coelicolor A3(2) and analysis of its genetic determinant. J Bacteriol 177:3946–3952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Revill WP, Bibb MJ, Hopwood D (1996) Relationships between fatty acid and polyketide synthases from Streptomyces coelicolor A3(2): characterization of the fatty acid synthase acyl carrier protein. J Bacteriol 178:5660–5667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richard-Greenblatt M, Av-Gay Y (2017) Epigenetic phosphorylation control of Mycobacterium tuberculosis infection and persistence. Microbiol Spectr 5(2):TBTB2-0005-2015

    Article  Google Scholar 

  • Rock CO, Jackowski S (2002) Forty years of bacterial fatty acid synthesis. Biochem Biophys Res Commun 292:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Rottig A, Steinbuchel A (2013) Acyltransferases in bacteria. Microbiol Mol Biol Rev 77:277–321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sacco E, Covarrubias AS, O’Hare HM et al (2007) The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 104:14628–14633

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Salzman V, Mondino S, Sala C et al (2010) Transcriptional regulation of lipid homeostasis in mycobacteria. Mol Microbiol 78:64–77

    PubMed  CAS  Google Scholar 

  • Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84

    Article  PubMed  CAS  Google Scholar 

  • Scarsdale JN, Kazanina G, He X et al (2001) Crystal structure of the Mycobacterium tuberculosis beta ketoacyl-acyl carrier protein synthase III. J Biol Chem 276:20516–20522

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer ML, Agnihotri G, Volker C et al (2001) Purification and biochemical characterization of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthases KasA and KasB. J Biol Chem 276:47029–47037

    Article  PubMed  CAS  Google Scholar 

  • Schujman GE, Paoletti L, Grossman AD, de Mendoza D (2003) FapR, a bacterial transcription factor involved in global regulation of membrane lipid biosynthesis. Dev Cell 4:663–672

    Article  PubMed  CAS  Google Scholar 

  • Schujman GE, Guerin M, Buschiazzo A et al (2006) Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. EMBO J 25:4074–4083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schweizer E, Hofmann J (2004) Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 68:501–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh R, Reynolds KA (2015) Characterization of FabG and FabI of the Streptomyces coelicolor dissociated fatty acid synthase. Chembiochem 16:631–640

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Mo S, Florova G, Reynolds KA (2012) Streptomyces coelicolor RedP and FabH enzymes, initiating undecylprodiginine and fatty acid biosynthesis, exhibit distinct acyl-CoA and malonyl-acyl carrier protein substrate specificities. FEMS Microbiol Lett 328:32–38

    Article  PubMed  CAS  Google Scholar 

  • Slama N, Leiba J, Eynard N et al (2011) Negative regulation by Ser/Thr phosphorylation of HadAB and HadBC dehydratases from Mycobacterium tuberculosis type II fatty acid synthase system. Biochem Biophys Res Commun 412:401–406

    Article  PubMed  CAS  Google Scholar 

  • Slayden RA, Barry CE III (2002) The role of KasA and KasB in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tuberculosis. Tuberculosis 82:149–160

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe IC (1997) Macroamphiphilic cell envelope components of Rhodococcus equi and closely related bacteria. Vet Microbiol 56:287–299

    Article  PubMed  CAS  Google Scholar 

  • Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18:81–101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tauch A, Kaiser O, Hain T et al (2005) Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol 187:4671–4682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tauch A, Trost E, Tilker A et al (2008) The lifestyle of Corynebacterium urealyticum derived from its complete genome sequence established by pyrosequencing. J Biotechnol 136:11–21

    Article  PubMed  CAS  Google Scholar 

  • Tong L (2013) Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 70:863–891

    Article  PubMed  CAS  Google Scholar 

  • Tran TH, Hsiao Y-S, Jo J et al (2015) Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase. Nature 518:120–124

    Article  PubMed  CAS  Google Scholar 

  • Tsai YT, Salzman V, Cabruja M et al (2017) Role of long chain acyl-CoAs in the regulation of mycolic acid biosynthesis in mycobacteria. Open Biol 7:170087

    Article  PubMed  PubMed Central  Google Scholar 

  • Veyron-Churlet R, Molle V, Taylor RC et al (2009) The Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthase III activity is inhibited by phosphorylation on a single threonine residue. J Biol Chem 284:6414–6424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veyron-Churlet R, Zanella-Cléon I, Cohen-Gonsaud M et al (2010) Phosphorylation of the Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein reductase MabA regulates mycolic acid biosynthesis. J Biol Chem 285:12714–12725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vilchèze C, Molle V, Carrère-Kremer S et al (2014) Phosphorylation of KasB regulates virulence and acid-fastness in Mycobacterium tuberculosis. PLoS Pathog 10(5):e1004115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wakil SJ, Stoops JK, Joshi VC (1983) Fatty acid synthesis and its regulation. Annu Rev Biochem 52:537–579

    Article  PubMed  CAS  Google Scholar 

  • Waldrop GL, Rayment I, Holden HM (1994) Three-dimensional structure of the biotin carboxylase subunit of acetyl-CoA carboxylase. Biochemistry 33:10249–10256

    Article  PubMed  CAS  Google Scholar 

  • White SW, Zheng J, Zhang YM, Rock (2005) The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem 74:791–831

    Article  PubMed  CAS  Google Scholar 

  • Xu WX, Zhang L, Mai JT et al (2014) The Wag31 protein interacts with AccA3 and coordinates cell wall lipid permeability and lipophilic drug resistance in Mycobacterium smegmatis. Biochem Biophys Res Commun 448:255–260

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Wang M, Ye B-C (2017) TetR family transcriptional regulator PccD negatively controls propionyl coenzyme A assimilation in Saccharopolyspora erythraea. J Bacteriol 199:1–12

    Article  Google Scholar 

  • Yousuf S, Angara R, Vindal V, Ranjan A (2015) Rv0494 is a starvation-inducible, auto-regulatory FadR-like regulator from Mycobacterium tuberculosis. Microbiology 161:463–476

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y-M, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH (1R01AI095183-01), ANPCyT PICT-2012-0168, PICT 2015-2022 and PID-2013-0042 to HG, PICT 2015-0796 to GG, PICT 2013-1981 to AA, and PICT 2014-1454 to LD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Gramajo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gago, G., Arabolaza, A., Diacovich, L., Gramajo, H. (2018). Components and Key Regulatory Steps of Lipid Biosynthesis in Actinomycetes. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-43676-0_65-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43676-0_65-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43676-0

  • Online ISBN: 978-3-319-43676-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics