Skip to main content

Data-Driven Methods in Multiscale Modeling of Soft Matter

  • Living reference work entry
  • First Online:
  • 621 Accesses

Abstract

As in many other scientific fields, data-driven methods are rapidly impacting multiscale modeling. This chapter will illustrate some of the many ways advanced statistical models and a data-centric perspective help augmenting computer simulations in soft matter. A specific focus on force fields, sampling, and simulation analysis is presented, taking advantage of machine learning, high-throughput schemes, and Bayesian inference.

This is a preview of subscription content, log in via an institution.

References

  • Bartók AP, Payne MC, Kondor R, Csányi G (2010) Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett 104(13):136403

    Google Scholar 

  • Behler J (2016) Perspective: machine learning potentials for atomistic simulations. J Chem Phys 145(17):170901

    Google Scholar 

  • Bereau T (2018) Example: ML model of Hirshfeld ratios. https://gitlab.mpcdf.mpg.de/trisb/handbook_example. Accessed 28 Feb 2018

  • Bereau T, Kremer K (2015) Automated parametrization of the coarse-grained martini force field for small organic molecules. J Chem Theory Comput 11(6):2783–2791

    Google Scholar 

  • Bereau T, Andrienko D, von Lilienfeld OA (2015) Transferable atomic multipole machine learning models for small organic molecules. J Chem Theory Comput 11(7):3225–3233

    Google Scholar 

  • Bereau T, Andrienko D, Kremer K (2016) Research update: computational materials discovery in soft matter. APL Mater 4(5):053101

    Google Scholar 

  • Bereau T, DiStasio RA Jr, Tkatchenko A, von Lilienfeld OA (2018) Non-covalent interactions across organic and biological subsets of chemical space: physics-based potentials parametrized from machine learning. J Chem Phys 147(24):241706

    Google Scholar 

  • Bowman GR, Pande VS, Noé F (2013) An introduction to Markov state models and their application to long timescale molecular simulation, vol 797. Springer Science & Business Media, Netherlands

    Google Scholar 

  • Chiavazzo E, Covino R, Coifman RR, Gear CW, Georgiou AS, Hummer G, Kevrekidis IG (2017) Intrinsic map dynamics exploration for uncharted effective free-energy landscapes. Proc Natl Acad Sci 114(28):E5494–E5503

    Google Scholar 

  • Chmiela S, Tkatchenko A, Sauceda HE, Poltavsky I, Schütt KT, Müller KR (2017) Machine learning of accurate energy-conserving molecular force fields. Sci Adv 3(5):e1603015

    Google Scholar 

  • Curtarolo S, Hart GL, Nardelli MB, Mingo N, Sanvito S, Levy O (2013) The high-throughput highway to computational materials design. Nat Mater 12(3):191–201

    Google Scholar 

  • Deringer VL, Csányi G (2017) Machine learning based interatomic potential for amorphous carbon. Phys Rev B 95(9):094203

    Google Scholar 

  • Faber FA, Hutchison L, Huang B, Gilmer J, Schoenholz SS, Dahl GE, Vinyals O, Kearnes S, Riley PF, von Lilienfeld OA (2017) Fast machine learning models of electronic and energetic properties consistently reach approximation errors better than DFT accuracy. arXiv preprint arXiv:170205532

    Google Scholar 

  • Ferguson AL (2017) Bayeswham: a Bayesian approach for free energy estimation, reweighting, and uncertainty quantification in the weighted histogram analysis method. J Comput Chem 38(18):1583–1605

    Google Scholar 

  • Ferguson AL, Panagiotopoulos AZ, Debenedetti PG, Kevrekidis IG (2011) Integrating diffusion maps with umbrella sampling: application to alanine dipeptide. J Chem Phys 134(13):04B606

    Google Scholar 

  • Ferrenberg AM, Swendsen RH (1989) Optimized monte carlo data analysis. Phys Rev Lett 63(12):1195

    Google Scholar 

  • Fisher DH, Pazzani MJ, Langley P (2014) Concept formation: knowledge and experience in unsupervised learning. Morgan Kaufmann, California

    Google Scholar 

  • Glielmo A, Sollich P, De Vita A (2017) Accurate interatomic force fields via machine learning with covariant kernels. Phys Rev B 95(21):214302

    Google Scholar 

  • Halgren TA (1992) The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. J Am Chem Soc 114(20):7827–7843

    Google Scholar 

  • Halgren TA, Damm W (2001) Polarizable force fields. Curr Opin Struct Biol 11(2):236–242

    Google Scholar 

  • Huan TD, Batra R, Chapman J, Krishnan S, Chen L, Ramprasad R (2017) A universal strategy for the creation of machine learning-based atomistic force fields. npj Comput Mater 3(1):37

    Google Scholar 

  • Huang B, von Lilienfeld O (2016) Communication: understanding molecular representations in machine learning: the role of uniqueness and target similarity. J Chem Phys 145(16):161102–161102

    Google Scholar 

  • Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. Apl Mater 1(1):011002

    Google Scholar 

  • John S (2016) Many-body coarse-grained interactions using gaussian approximation potentials. arXiv preprint arXiv:161109123

    Google Scholar 

  • Kukharenko O, Sawade K, Steuer J, Peter C (2016) Using dimensionality reduction to systematically expand conformational sampling of intrinsically disordered peptides. J Chem Theory Comput 12(10):4726–4734

    Google Scholar 

  • Li Z, Kermode JR, De Vita A (2015) Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys Rev Lett 114(9):096405

    Google Scholar 

  • Li Y, Li H, Pickard FC IV, Narayanan B, Sen FG, Chan MK, Sankaranarayanan SK, Brooks BR, Roux B (2017) Machine learning force field parameters from ab initio data. J Chem Theory Comput 13(9):4492–4503

    Google Scholar 

  • Mackerell AD (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25(13):1584–1604

    Google Scholar 

  • Maple JR, Dinur U, Hagler AT (1988) Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. Proc Natl Acad Sci 85(15):5350–5354

    Google Scholar 

  • Marrink SJ, Tieleman DP (2013) Perspective on the martini model. Chem Soc Rev 42(16):6801–6822

    Google Scholar 

  • Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH (2007) The martini force field: coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824

    Google Scholar 

  • Menichetti R, Kanekal KH, Kremer K, Bereau T (2017a) In silico screening of drug-membrane thermodynamics reveals linear relations between bulk partitioning and the potential of mean force. J Chem Phys 147(12):125101

    Google Scholar 

  • Menichetti R, Kremer K, Bereau T (2017b) Efficient potential of mean force calculation from multiscale simulations: solute insertion in a lipid membrane. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2017.08.095

  • Morawietz T, Singraber A, Dellago C, Behler J (2016) How Van der Waals interactions determine the unique properties of water. Proc Natl Acad Sci 113:201602375

    Google Scholar 

  • Neale C, Bennett WD, Tieleman DP, Pomès R (2011) Statistical convergence of equilibrium properties in simulations of molecular solutes embedded in lipid bilayers. J Chem Theory Comput 7(12):4175–4188

    Google Scholar 

  • Noé F (2008) Probability distributions of molecular observables computed from markov models. J Chem Phys 128(24):244103

    Google Scholar 

  • Noid W (2013) Perspective: coarse-grained models for biomolecular systems. J Chem Phys 139(9):09B201_1

    Google Scholar 

  • Olsson S, Wu H, Paul F, Clementi C, Noé F (2017) Combining experimental and simulation data of molecular processes via augmented Markov models. Proc Natl Acad Sci 114(31):8265–8270

    Google Scholar 

  • Perez A, MacCallum JL, Dill KA (2015) Accelerating molecular simulations of proteins using Bayesian inference on weak information. Proc Natl Acad Sci 112(38):11846–11851

    Google Scholar 

  • Perez A, Morrone JA, Dill KA (2017) Accelerating physical simulations of proteins by leveraging external knowledge. Wiley Interdiscip Rev Comput Mol Sci 7:e1309

    Google Scholar 

  • Peter C, Kremer K (2010) Multiscale simulation of soft matter systems. Faraday Discuss 144:9–24

    Google Scholar 

  • Plattner N, Doerr S, De Fabritiis G, Noe F (2017) Complete protein–protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling. Nat Chem 9:1005–1011

    Google Scholar 

  • Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85

    Google Scholar 

  • Rabiner L, Juang B (1986) An introduction to hidden Markov models. IEEE ASSP Mag 3(1):4–16

    Google Scholar 

  • Ramakrishnan R, von Lilienfeld OA (2017) Machine learning, quantum chemistry, and chemical space. Rev Comput Chem 30:225–256

    Google Scholar 

  • Rasmussen CE, Williams CK (2006) Gaussian processes for machine learning, vol 1. MIT press, Cambridge

    Google Scholar 

  • Rudzinski JF, Kremer K, Bereau T (2016) Communication: consistent interpretation of molecular simulation kinetics using Markov state models biased with external information. J Chem Phys 144(5):051102

    Google Scholar 

  • Rühle V, Junghans C, Lukyanov A, Kremer K, Andrienko D (2009) Versatile object-oriented toolkit for coarse-graining applications. J Chem Theory Comput 5(12):3211–3223

    Google Scholar 

  • Rupp M, Tkatchenko A, Müller KR, Von Lilienfeld OA (2012) Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett 108(5):058301

    Google Scholar 

  • Schiilkopf B. (2001) The Kernel Trick for Distances. In Advances in Neural Information Processing Systems 13: Proceedings of the 2000 Conference, MIT Press, 13:301

    Google Scholar 

  • Shaw DE, Grossman J, Bank JA, Batson B, Butts JA, Chao JC, Deneroff MM, Dror RO, Even A, Fenton CH et al (2014) Anton 2: raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. In: Proceedings of the international conference for high performance computing, networking, storage and analysis. IEEE Press, New Orleans, pp 41–53

    Google Scholar 

  • Sodt AJ, Sandar ML, Gawrisch K, Pastor RW, Lyman E (2014) The molecular structure of the liquid ordered phase of lipid bilayers. J Am Chem Soc 136(2):725

    Google Scholar 

  • Stroet M, Koziara KB, Malde AK, Mark AE (2017) Optimization of empirical force fields by parameter space mapping: a single-step perturbation approach. J Chem Theory Comput 13:6201–6212

    Google Scholar 

  • Tetko IV, Tanchuk VY, Villa AEP (2001) Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices. J Chem Inf Comput Sci 41(5):1407–1421

    Google Scholar 

  • Tkatchenko A, DiStasio RA Jr, Car R, Scheffler M (2012) Accurate and efficient method for many-body van der Waals interactions. Phys Rev Lett 108(23):236402

    Google Scholar 

  • Van Vleet MJ, Misquitta AJ, Stone AJ, Schmidt JR (2016) Beyond Born–Mayer: improved models for short-range repulsion in ab initio force fields. J Chem Theory Comput 12(8):3851–3870

    Google Scholar 

  • Voth GA (2008) Coarse-graining of condensed phase and biomolecular systems. CRC press, Boca Raton

    Google Scholar 

  • Wang W, Donini O, Reyes CM, Kollman PA (2001) Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu Rev Biophys Biomol Struct 30(1):211–243

    Google Scholar 

Download references

Acknowledgements

Various discussions have helped shape some of the views developed in this chapter. I am especially grateful to Denis Andrienko, Kurt Kremer, Joseph F. Rudzinski, Omar Valsson, and Anatole von Lilienfeld.

This work was supported in part by the Emmy Noether Programme of the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan Bereau .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bereau, T. (2018). Data-Driven Methods in Multiscale Modeling of Soft Matter. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42913-7_40-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42913-7

  • Online ISBN: 978-3-319-42913-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics