Skip to main content

Scaffold-Free Biofabrication

  • Living reference work entry
  • First Online:
Book cover 3D Printing and Biofabrication

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

Abstract

Tissue engineering and regenerative medicine have met great scientific, medical, and technological advances in the past decade. Most methods combine scaffolds, such as polymers, and living cells to make implantable structures that will integrate and heal the host’s tissues. More recently, alternative scaffold-free approaches have started to emerge. This chapter provides an overview of the current scaffold-free systems, advantages, challenges, methods, and applications. Scaffold-free tissue artificially produced in the lab using patients’ own cells has already been successfully used in heart and blood vessel regeneration at a small scale. New techniques and approaches are being developed, not only in terms of assembling cells and structures but also in terms of new equipment, namely for 3D bioprinting. Both primary and stem or iPSC-derived cells are used to assemble artificial tissues that are currently being tested in vivo and in vitro. These engineered constructs have numerous applications, such as regenerative medicine, disease models, and drug testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Achilli T-M, Meyer J, Morgan JR (2012) Advances in the formation use and understanding of multi-cellular spheroids. Exp Opin Biol Ther 12(10):1347–1360

    Article  CAS  Google Scholar 

  • Akizuki T, Oda S, Komaki M, Tsuchioka H, Kawakatsu N, Kikuhi A, Yamato M, Okano T, Ishikawa I (2005) Application of periodontal ligament cell sheet for periodontal regeneration: a pilot study in beagle dogs. J Periodontal Res 40(3):245–251

    Article  PubMed  Google Scholar 

  • Almeida DC, Donizetti-Oliveira C, Barbossa-Costa P, Origassa CS, Camara NO (2013) In search of mechanisms associated with mesenchymal stem cell-based therapies for acute kidney injury. Clin Biochem Rev 34:131–144

    PubMed  PubMed Central  Google Scholar 

  • Athanasiou KA, Eswaramoorthy R, Hadidi P, Hu JC (2013) Self-organization and the self-assembling process in tissue engineering. Annu Rev Biomed Eng 15:115–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baraniak PR, McDevitt TC (2012) Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res 347:701–711

    Article  CAS  PubMed  Google Scholar 

  • Barrila J, Radtke AL, Crabbe A, Sarker SF, Herbst-Kralovetz MM, Ott CM, Nickerson CA (2010) Organotypic 3D cell culture models: using the rotating wall vessel to study host–pathogen interactions. Nat Rev Microbiol 8(11):791–801

    Article  CAS  PubMed  Google Scholar 

  • Beysens DA, Forgacs G, Glazier JA (2000) Cell sorting is analogous to phase separation in fluids. Proc Natl Acad Sci U S A 97:9467–9471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czajka CA, Mehesz AN, Trusk TC, Yost MJ, Drake CJ (2014) Scaffold-free tissue engineering: organization of the tissue cytoskeleton and its effects on tissue shape. Ann Biomed Eng 42(5):1049–1061

    Article  PubMed  PubMed Central  Google Scholar 

  • Denayer T, Stöhr T, Van Roy M (2014) Animal models in translational medicine: validation and prediction. New Horiz Transl Med 2(1):5–11

    Article  Google Scholar 

  • Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12(4):207–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Haddad E, Lauritano D, Candotto V, Carinci F (2014) Guided bone regeneration is a reliable technique in implant dentistry: an overview and a case report. OA Dentist 2(1):5–8

    Google Scholar 

  • Festing S, Wilkinson R (2007) The ethics of animal research. Talking point on the use of animals in scientific research. EMBO Rep 8(6):526–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foty R (2011) A simple hanging drop cell culture protocol for generation of 3D spheroids. J Vis Exp 51:2720

    Google Scholar 

  • Freed LE, Langer R, Martin I, Pellis NR, Vunjak-Novakovic G (1997) Tissue engineering of cartilage in space. Proc Natl Acad Sci U S A 94(25):13885–13890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauvin R, Ahsan T, Larouche D, Lévesque P, Dubé J, Auger FA, Nerem RM, Germain L (2010) A novel single-step self-assembly approach for the fabrication of tissue-engineered vascular constructs. Tissue Eng Part A 16(5):1737–1747

    Article  CAS  PubMed  Google Scholar 

  • Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz AP, Behrens P (2010) Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 18(11):1456–1464

    Article  CAS  PubMed  Google Scholar 

  • Gilpin DA, Weidenbecher MS, Dennis JE (2010) Scaffold-free tissue-engineered cartilage implants for laryngotracheal reconstruction. Laryngoscope 120(3):612–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilpin SE, Guyette JP, Gonzalez G, Ren X, Asara JM, Mathisen DJ, Vacanti JP, Ott HC (2014) Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J Heart Lung Transplant 33(3):298–308

    Article  PubMed  Google Scholar 

  • Groll J, Boland T, Blunk T, Burdick JA, Cho D-W, Dalton PD, Derby B, Forgacs G, Li Q, Mironov VA, Moroni L, Nakamura M, Shu W, Takeuchi S, Vozzi G, Woodfield TBF, Xu T, Yoo JJ, Malda J (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8:013001

    Article  PubMed  Google Scholar 

  • Guimaraes-Souza N, Soler R, Yoo JJ (2009) Regenerative medicine of the kidney. In: Denstedt J, Atala A (eds) Biomaterials and tissue engineering in urology, 1st edn. CRC Press LLC, Boca Raton, pp 502–517

    Chapter  Google Scholar 

  • Guimaraes-Souza NK, Yamaleyeva LM, AbouShwareb T, Atala A, Yoo JJ (2012) In vitro reconstitution of human kidney structures for renal cell therapy. Nephrol Dial Transplant 27(8):3082–3090

    Article  CAS  PubMed  Google Scholar 

  • Guyette JP, Gilpin SE, Charest JM, Tapias LF, Ren X, Ott HC (2014) Perfusion decellularization of whole organs. Nat Protocols 9:1451–1468

    Article  CAS  PubMed  Google Scholar 

  • Hirai J, Matsuda T (1996) Venous reconstruction using hybrid vascular tissue composed of vascular cells and collagen tissue regeneration process. Cell Transplant 5:93–105

    Article  CAS  PubMed  Google Scholar 

  • Huang SY, Zhang DS (2011) Periodontal ligament cell sheet engineering: a new possible strategy to promote periodontal regeneration of dental implants. Dent Hypothesis 2(1):23–30

    Article  Google Scholar 

  • Ingber DE, Mow VC, Butler D, Niklason L, Huard J, Mao J, Yannas I, Kaplan D, Vunjak-Novakovic G (2006) Tissue engineering and developmental biology: going biomimetic. Tissue Eng 12:3265–3283

    Article  CAS  PubMed  Google Scholar 

  • Ishihara K, Nakayama K, Akieda S, Matsuda S, Iwamoto Y (2014) Simultaneous regeneration of full-thickness cartilage and subchondral bone defects in vivo using a three-dimensional scaffold-free autologous construct derived from high-density bone marrow-derived mesenchymal stem cells. J Orthop Surg Res 9:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Itoh M, Nakayama K, Noguchi R, Kamohara K, Furukawa K, Uchihashi K, Toda S, Oyama J, Node K, Morita S (2015) Scaffold-free tubular tissues created by a bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS One 10(12):e0145971

    Article  PubMed  PubMed Central  Google Scholar 

  • Jitraruch S, Dhawan A, Hughes RD, Filippi C, Soong D, Philippeos C, Lehec SC, Heaton ND, Longhi MS, Mitry RR (2014) Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. PLoS One 10(3):e0119226

    Google Scholar 

  • Jorgensen A, Young J, Nielsen JE, Joensen UN, Toft BG, Rajpert-De Meyts E, Loveland KL (2014) Hanging drop cultures of human testis and testis cancersamples: a model used to investigate activin treatment effects in a preserved niche. Br J Cancer 110:2604–2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung Y, Ji HY, Chen Z, Chan HF, Atchison L, Klitzman B, Truskey G, Leong KW (2015) Scaffold-free, human mesenchymal stem cell-based tissue engineered blood vessels. Nat Sci Rep 5:15116

    Article  CAS  Google Scholar 

  • Karczewski M, Malkiewicz T (2015) Scaffolds from surgically removed kidneys as a potential source of organ transplantation. Biomed Res Int 2015:1–8. Article ID 325029

    Article  Google Scholar 

  • Kelm JM, Lorber V, Snedeker JG, Schmidt D, Broggini-Tenzer A, Weisstanner M, Odermatt B, Mol A, Zünd G, Hoerstrup SP (2010) A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. J Biotechnol 148(1):46–55

    Article  CAS  PubMed  Google Scholar 

  • Klebe RJ (1988) Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res 179:362–373

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Kana K, Nishida K, Yamato M, Okano T (2013) Corneal regeneration by transplantation of corneal epithelial cell sheets fabricated with automated cell culture system in rabbit model. Biomaterials 34(36):9010–9017

    Article  CAS  PubMed  Google Scholar 

  • L’Heureux N, Germain L, Labbe R, Auger FA (1993) In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J Vasc Surg 17:499–509

    Article  PubMed  Google Scholar 

  • L’Heureux NPS, Labbé R, Germain L, Auger FA (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12:47–56

    PubMed  Google Scholar 

  • Lee AY, Lee Y-U, Mahler N, Best C, Tara S, Breuer CK (2016) Regenerative implants for cardiovascular tissue engineering. In: Laurence J (ed) Translating regenerative medicine to the clinic, 1st edn. Academic, London, pp 52–57

    Google Scholar 

  • Leonard F, Godin B (2016) 3D in vitro model for breast cancer research using magnetic levitation and bioprinting method. Methods Mol Biol 1406:239–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Little MH (2006) Regrow or repair: potential regenerative therapies for the kidney. J Am Soc Nephrol 17:2390–2401

    Article  PubMed  Google Scholar 

  • MacArthur BD, Oreffo ROC (2005) Bridging the gap. Nature 433(7021):19

    Article  CAS  PubMed  Google Scholar 

  • Mae S, Shono A, Shiota F, Yasuno T, Kajiwara M, Gotoda-Nishimura N, Arai S, Sato-Otubo A, Toyoda T, Takahashi K, Nakayama N, Cowan CA, Aoi T, Ogawa S, McMahon AP, Yamanaka S, Osafune K (2013) Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun 4:1367

    Article  PubMed  PubMed Central  Google Scholar 

  • Mak IWY, Evaniew N, Ghert M (2014) Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res 6(2):114–118

    PubMed  PubMed Central  Google Scholar 

  • Marga F, Jakab K, Khatiwala C, Shephard B, Dorfman S, Forgacs G (2011) Organ printing: a novel tissue engineering paradigm. 5th Eur Conf IFMBE Proc 37:27–30

    Article  Google Scholar 

  • Mazza G, Rombouts K, Hall AR, Urbani L, Vinh Luong T, Al-Akkad W, Longato L, Brown D, Maghsoudlou P, Dhillon AP, Fuller B, Davidson B, Moore K, Dhar D, De Coppi P, Malago M, Porginzani M (2015) Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci Rep 5:13079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAllister TN, Maruszewski M, Garrido SA, Wystrychowski W, Dusserre N, Marini A, Zagalski K, Fiorillo A, Avila H, Manglano X, Antonelli J, Kocher A, Zembala M, Cierpka L, de la Fuente LM, L’heureux N (2009) Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373:1440–1446

    Article  PubMed  Google Scholar 

  • Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21(4):157–161

    Article  CAS  PubMed  Google Scholar 

  • Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30:164–2174

    Article  Google Scholar 

  • Miyazaki T, Miyauchi S, Matsuzaka S (2010) Formation of proteoglycan and collagen-rich scaffold-free stiff cartilaginous tissue using two-step culture methods with combinations of growth factors. Tissue 16(5):1575–1584

    CAS  Google Scholar 

  • Moon KH, Ko IK, Yoo JJ, Atala A (2016) Kidney diseases and tissue engineering. Methods 99:112–119

    Article  CAS  PubMed  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  CAS  PubMed  Google Scholar 

  • Na S, Zhang H, Huang F, Wang W, Ding Y, Li D, Jin Y (2016) Regeneration of dental pulp/dentine complex with a three-dimensional and scaffold-free stem-cell sheet-derived pellet. J Tissue Eng Regen Med 10(3):261–270

    Article  CAS  PubMed  Google Scholar 

  • Nath S, Devi GR (2016) Three-dimensional culture systems in cancer research: focus on tumor spheroid model. Pharmacol Ther 163:94–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y (2004) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351(12):1187–1196

    Article  CAS  PubMed  Google Scholar 

  • No da Y, Jeong GS, Lee SH (2014) Immune-protected xenogeneic bioartificial livers with liver-specific microarchitecture and hydrogel-encapsulated cells. Biomaterials 35(32):8983–8991

    Article  PubMed  Google Scholar 

  • Norotte C, Marga F, Niklason L, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien FJ (2011) Biomaterials and scaffolds for tissue engineering. Mater Today 14(3):88–95

    Article  Google Scholar 

  • O’Connor N, Mulliken J, Banks-Schlegel S, Kehinde O, Green H (1981) Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 317(8211):75–78

    Article  Google Scholar 

  • Ohashi K, Yokoyama T, Yamato M, Kuge H, Kanehiro H, Tsutsumi M, Amanuma T, Iwata H, Yang J, Okano T, Nakajima Y (2007) Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat Med 13(7):880–885

    Article  CAS  PubMed  Google Scholar 

  • Ohki T, Yamato M, Ota M, Murakami D, Takagi R, Kondo M, Nakamura T, Okano T, Yamamoto M (2009) Endoscopic transplantation of human oral mucosal epithelial cell sheets-world’s first case of regenerative medicine applied to endoscopic treatment. Gastrointest Endosc 69(5):AB253–AB254

    Article  Google Scholar 

  • Okano T, Yamada N, Sakai H, Sakurai Y (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 27(10):1243–1251

    Article  CAS  PubMed  Google Scholar 

  • Orlando G, Booth C, Wang Z, Totonelli G, Ross CL, Moran E, Salvatori M, Maghsoudlou P, Turmaine M, Delario G, Al-Shraideh Y, Farooq U, Farney AC, Rogers J, Iskandar SS, Burns A, Marini FC, De Coppi P, Stratta RJ, Soker S (2013) Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies. Biomaterials 34:5915–5925

    Article  CAS  PubMed  Google Scholar 

  • Ozbolat IT (2015) Scaffold-based or scaffold-free bioprinting: competing or complementing approaches? J Nanotechnol Eng Med 6(2):024701

    Article  Google Scholar 

  • Phillips TJ (1998) New skin for old: developments in biological skin substitutes. Arch Dermatol 134(3):344–349

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  • Responte DJ, Arzi B, Natoli RM, Hu JC, Athanasiou KA (2012) Mechanisms underlying the synergistic enhancement of self-assembled neocartilage treated with chondroitinase-ABC and TGF-β1. Biomaterials 33(11):3187–3194

    Google Scholar 

  • Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6(3):331–343

    Article  CAS  PubMed  Google Scholar 

  • Sawa Y, Miyagawa S, Sakaguchi T, Fujita T, Matsuyama A, Saito A, Shimizu T, Okano T (2012) Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg Today 42(2):181–184

    Article  PubMed  Google Scholar 

  • Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, Coulter SC, Lin J, Ober J, Vaughn WK, Branco RV, Oliveira EM, He R, Geng YJ, Willerson JT, Perin EC (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Lal P (2002) Recent development on computer aided tissue engineering – a review. Comput Methods Prog Biomed 67:85–103

    Article  Google Scholar 

  • Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Lopes SMCS, Little MH (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526(7574):564–568

    Article  CAS  PubMed  Google Scholar 

  • Tseng H, Gage JA, Shen T, Haisler WL, Neeley SK, Shiao S, Chen J, Desai PK, Liao A, Hebel C, Raphael RM, Becker JL, Souza GR (2015) A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging. Sci Rep 5:13987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tung Y-C, Hsiao AY, Allen SG, Torisawa Y-S, Ho M, Takayama S (2011) High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136(3):473–478

    Article  CAS  PubMed  Google Scholar 

  • Vunjak NG, Eschenhagen T, Mummery C (2014) Myocardial tissue engineering: in vitro models. Cold Spring Harb Perspect Med 4(3):pii: a014076

    Google Scholar 

  • Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400

    Article  CAS  PubMed  Google Scholar 

  • Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y (1990) Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Makromol Chem Rapid Commun 11(11):571–576

    Article  CAS  Google Scholar 

  • Zhao J, Liu L, Wei J, Ma D, Geng W, Yan X, Zhu J, Du H, Liu Y, Li L, Chen F (2012) A novel strategy to engineer small-diameter vascular grafts from marrow-derived mesenchymal stem cells. Artif Organs 36(1):93–101

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Raquel Verissimo .

Editor information

Editors and Affiliations

1 Supplementary Electronic Material (S)

(MP4 15727 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Verissimo, A.R., Nakayama, K. (2017). Scaffold-Free Biofabrication. In: Ovsianikov, A., Yoo, J., Mironov, V. (eds) 3D Printing and Biofabrication. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-40498-1_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40498-1_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40498-1

  • Online ISBN: 978-3-319-40498-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics