Skip to main content

Scoliosis Instrumentation Systems

  • Living reference work entry
  • First Online:
  • 110 Accesses

Abstract

Adult spinal deformity is a complex deformity that involves three-dimensional deformation in coronal, sagittal, and axial planes. Spinal and spinopelvic parameters such as SVA, pelvic tilt, pelvic incidence, and lumbar lordosis are important in understanding, characterizing, and treating adult spinal deformity. Treatment of adult spinal deformity needs to be tailored to each patient with respect to the nature of the curve and the patients’ overall medical health. Operative techniques have changed substantially with time, from the early use of Harrington rods to modern pedicle screws. Multiple osteotomies (SPO, PSO, and VCR) can be applied for the desired level of spinal correction. Operative management of adult spinal deformity is wrought with complexity and severe complications. Newer techniques involving minimally invasive surgery and interbody fusions are being increasingly used for deformity correction. In this chapter, we will discuss such operative techniques for spinal deformity correction.

This is a preview of subscription content, log in via an institution.

References

  • Aebi M (2005) The adult scoliosis. Eur Spine J 14:925–948

    Article  PubMed  Google Scholar 

  • Anand N, Rosemann R, Khalsa B, Baron EM (2010) Mid-term to long-term clinical and functional outcomes of minimally invasive correction and fusion for adults with scoliosis. Neurosurg Focus 28(3):E6

    Article  PubMed  Google Scholar 

  • Angevine PD, Kaiser MG (2008) Radiographic measurement techniques. Neurosurgery 63(suppl 3):40–45

    Article  PubMed  Google Scholar 

  • Berjano P, Aebi M (2015) Pedicle subtraction osteotomies (PSO) in the lumbar spine for sagittal deformities. Eur Spine J 24(Suppl 1):S49–S57

    Article  PubMed  Google Scholar 

  • Bernhardt M, Bridwell KH (1989) Segmental analysis of the sagittal plane alignment of the normal thoracic and lumbar spines and thoracolumbar junction. Spine 14(7):717–721

    Article  CAS  PubMed  Google Scholar 

  • Berthonnaud E, Dimnet J, Roussouly P, Labelle H (2005) Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. J Spinal Disord Tech 18(1):40–47

    Article  PubMed  Google Scholar 

  • Berven S, Bradford DS (2002) Neuromuscular scoliosis: causes of deformity and principles for evaluation and management. Semin Neurol 22:167–178

    Article  PubMed  Google Scholar 

  • Berven SH, Lowe T (2007) The Scoliosis Research Society classification for adult spinal deformity. Neurosurg Clin N Am 18(2):207–213

    Article  PubMed  Google Scholar 

  • Bianco K, Norton R, Schwab F et al (2014) Complications and intercenter variability of three-column osteotomies for spinal deformity surgery: a retrospective review of 423 patients. Neurosurg Focus 36:E18

    Article  PubMed  Google Scholar 

  • Birknes JK et al (2008) Adult degenerative scoliosis: a review. Neurosurgery 63(suppl 3):94–103

    Article  PubMed  Google Scholar 

  • Boulay C et al (2006a) Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J 15:415–422

    Article  CAS  PubMed  Google Scholar 

  • Boulay C, Tardieu C, Hecquet J et al (2006b) Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J 15(4):415–422

    Article  CAS  PubMed  Google Scholar 

  • Bradford DS (1987) Vertebral column resection. Orthop Trans 11:502

    Google Scholar 

  • Bridwell KH (2006) Decision making regarding Smith-Petersen vs. pedicle subtraction osteotomy vs. vertebral column resection for spinal deformity. Spine 31:S171–S178

    Article  PubMed  Google Scholar 

  • Bridwell KH, Lewis SJ, Lenke LG et al (2003) Pedicle subtraction osteotomy for the treatment of fixed sagittal imbalance. J Bone Joint Surg Am 85-A:454–463

    Article  Google Scholar 

  • Bridwell KH, Glassman S, Horton W et al (2009) Does treatment (nonoperative and operative) improve the two-year quality of life in patients with adult symptomatic lumbar scoliosis: a prospective multicenter evidence-based medicine study. Spine 34(20):2171–2178

    Article  PubMed  Google Scholar 

  • Burns CB, Dua K, Trasolini NA, Komatsu DE, Barsi JM (2016) Biomechanical comparison of spinopelvic fixation constructs: iliac screw versus S2-alar-iliac screw. Spine Deform 4(1):10–15

    Article  PubMed  Google Scholar 

  • Carter O, Haynes S (1987) Prevalence rates for scoliosis in US adults: results from the first National Health and Nutrition Examination Survey. Int J Epidemiol 16:537–544

    Article  CAS  PubMed  Google Scholar 

  • Chang KW, Dewei Z, McAfee PC et al (1988) A comparative biomechanical study of spinal fixation using the combination spinal rod-plate and transpedicular screw fixation system. J Spinal Disord 1(4):257–266

    CAS  PubMed  Google Scholar 

  • Chen IH, Chien JT, Yu TC (2001) Transpedicular wedge osteotomy for correction of thoracolumbar kyphosis in ankylosing spondylitis: experience with 78 patients. Spine 26:E354–E360

    Article  CAS  PubMed  Google Scholar 

  • Cho KJ, Bridwell KH, Lenke LG et al (2005) Comparison of Smith-Petersen versus pedicle subtraction osteotomy for the correction of fixed sagittal imbalance. Spine 30:2030–2037

    Article  PubMed  Google Scholar 

  • Cobb JR (1948) Outline for the study of scoliosis. In: Edwards JW, American Academy of Orthopaedic Surgeons (eds) Instructional course lectures. American Academy, Ann Arbor, pp 261–275

    Google Scholar 

  • Cummins J, Lurie JD, Tosteson TD et al (2006) Descriptive epidemiology and prior healthcare utilization of patients in the Spine Patient Outcomes Research Trial’s (SPORT) three observational cohorts: disc herniation, spinal stenosis, and degenerative spondylolisthesis. Spine 31(7):806–814

    Article  PubMed  PubMed Central  Google Scholar 

  • Deukmedjian AR, Le TV, Baaj AA, Dakwar E, Smith DA, Uribe JS (2012a) Anterior longitudinal ligament release using the minimally invasive lateral retroperitoneal transpsoas approach: a cadaveric feasibility study and report of 4 clinical cases. J Neurosurg Spine 17(6):530–539

    Article  PubMed  Google Scholar 

  • Deukmedjian AR, Dakwar E, Ahmadian A, Smith DA, Uribe JS (2012b) Early outcomes of minimally invasive anterior longitudinal ligament release for correction of sagittal imbalance in patients with adult spinal deformity. ScientificWorldJournal 2012:789698

    Article  PubMed  PubMed Central  Google Scholar 

  • Doherty J (1973) Complications of fusion in lumbar scoliosis. Proceedings of the Scoliosis Research Society. J Bone Joint Surg Am 55:438

    Google Scholar 

  • Drummond DS (1988) Harrington instrumentation with spinous process wiring for idiopathic scoliosis. Orthop Clin North Am 19(2):281–289

    CAS  PubMed  Google Scholar 

  • Gaines RW (2000) The use of pedicle-screw internal fixation for the operative treatment of spinal disorders. J Bone Joint Surg Am 82-A(10):1458–1476

    Article  Google Scholar 

  • Gelalis ID, Paschos NK, Pakos EE et al (2012) Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J 21(2):247–255

    Article  PubMed  Google Scholar 

  • Glassman SD, Berven S, Bridwell K et al (2005a) Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine 30:682–688

    Article  PubMed  Google Scholar 

  • Glassman SD, Bridwell K, Dimar JR et al (2005b) The impact of positive sagittal balance in adult spinal deformity. Spine 30:2024–2029

    Article  PubMed  Google Scholar 

  • Glassman SD, Carreon LY, Shaffrey CI et al (2010) The costs and benefits of nonoperative management for adult scoliosis. Spine 35(5):578–582

    Article  PubMed  Google Scholar 

  • Gödde S, Fritsch E, Dienst M, Kohn D (2003) Influence of cage geometry on sagittal alignment in instrumented posterior lumbar interbody fusion. Spine 28(15):1693–1699

    PubMed  Google Scholar 

  • Grobler L, Moe J, Winter R et al (1978) Loss of lumbar lordosis following surgical correction of thoracolumar deformities. Orthop Trans 2:239

    Google Scholar 

  • Hackenberg L, Link T, Liljenqvist U (2002) Axial and tangential fixation strength of pedicle screws versus hooks in the thoracic spine in relation to bone mineral density. Spine 27(9):937–942

    Article  PubMed  Google Scholar 

  • Hamill CL, Lenke LG, Bridwell KH, Chapman MP, Blanke K, Baldus C (1996) The use of pedicle screw fixation to improve correction in the lumbar spine of patients with idiopathic scoliosis. Is it warranted? Spine 21(10):1241–1249

    Article  CAS  PubMed  Google Scholar 

  • Harrington PR (1972) Technical details in relation to the successful use of instrumentation in scoliosis. Orthop Clin North Am 3:49–67

    CAS  PubMed  Google Scholar 

  • Harrington PR (1973) The history and development of Harrington instrumentation. Clin Orthop Relat Res 93:110–112

    Article  Google Scholar 

  • Jackson RP, McManus AC (1994) Radiographic analysis of sagittal plane alignment and balance in standing volunteers and patients with low back pain matched for age, sex, and size: a prospective controlled clinical study. Spine (Phila Pa 1976) 19:1611–1618

    Article  CAS  Google Scholar 

  • Kebaish KM (2010) Sacropelvic fixation: techniques and complications. Spine 35(25):2245–2251

    Article  PubMed  Google Scholar 

  • Kelleher MO, Timlin M, Persaud O, Rampersaud YR (2010) Success and failure of minimally invasive decompression for focal lumbar spinal stenosis in patients with and without deformity. Spine 35:E981–E987

    Article  PubMed  Google Scholar 

  • Kelly MP, Lenke LG, Shaffrey CI et al (2014) Evaluation of complications and neurological deficits with three-column spine reconstructions for complex spinal deformity: a retrospective Scoli-RISK-1 study. Neurosurg Focus 36:E17

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Bridwell KH, Lenke LG et al (2008) Proximal junctional kyphosis in adult spinal deformity after segmental posterior spinal instrumentation and fusion: minimum five-year follow-up. Spine 33:2179–2184

    Article  PubMed  Google Scholar 

  • Kim HJ, Bridwell KH, Lenke LG et al (2013) Proximal junctional kyphosis results in inferior SRS pain subscores in adult deformity patients. Spine (Phila Pa 1976) 38:896–901

    Article  Google Scholar 

  • Kim HJ, Boachie-adjei O, Shaffrey CI et al (2014) Upper thoracic versus lower thoracic upper instrumented vertebrae endpoints have similar outcomes and complications in adult scoliosis. Spine 39(13):E795–E799

    Article  PubMed  Google Scholar 

  • Kostuik JP, Israel J, Hall JE (1973) Scoliosis surgery in adults. Clin Orthop Relat Res 93:225–234

    Article  Google Scholar 

  • Kuklo TR, Bridwell KH, Lewis SJ et al (2001) Minimum 2-year analysis of sacropelvic fixation and L5-S1 fusion using S1 and iliac screws. Spine 26(18):1976–1983

    Article  CAS  PubMed  Google Scholar 

  • Lafage V et al (2008) Standing balance and sagittal plane spinal deformity: analysis of spinopelvic and gravity line parameters. Spine 33:1572–1578

    Article  PubMed  Google Scholar 

  • Lafage V, Schwab F, Patel A, Hawkinson N, Farcy J (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine 34:E599–E606

    Article  PubMed  Google Scholar 

  • Lazennec JY, Ramare S, Arafati N et al (2009) Sagittal alignment in lumbosacral fusion: relations between radiological parameters and pain. Eur Spine J 9:47–55

    Article  Google Scholar 

  • Le TV, Vivas AC, Dakwar E, Baaj AA, Uribe JS (2012) The effect of the retroperitoneal transpsoas minimally invasive lateral interbody fusion on segmental and regional lumbar lordosis. Sci World J 2012:516706

    Article  Google Scholar 

  • Legaye J, Duval-Beaupere G, Hecquet J et al (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7:99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenke LG et al (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 83-A:1169–1181

    Article  Google Scholar 

  • Lenke LG, Sides BA, Koester LA et al (2010) Vertebral column resection for the treatment of severe spinal deformity. Clin Orthop Relat Res 468:687–699

    Article  PubMed  Google Scholar 

  • Liljenqvist U, Hackenberg L, Link T, Halm H (2001) Pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine. Acta Orthop Belg 67(2):157–163

    CAS  PubMed  Google Scholar 

  • Lowe T et al (2006) The SRS classification for adult spinal deformity: building on the King/Moe and Lenke classification systems. Spine (Phila Pa 1976) 31(suppl 19):S119–S125

    Article  Google Scholar 

  • Luque ER (1982) Segmental spinal instrumentation for correction of scoliosis. Clin Orthop Relat Res 163:192–198

    Google Scholar 

  • Marchesi DG, Aebi M (1992) Pedicle fixation devices in the treatment of adult lumbar scoliosis. Spine 17(8 Suppl):S304–S309

    Article  CAS  PubMed  Google Scholar 

  • McCord DH, Cunningham BH, Shondy Y, Myers J, McAffee PC (1992) Biomechanical analysis of lumbosacral fixation. Spine 17:S235–S243

    Article  CAS  PubMed  Google Scholar 

  • Mehta SS et al (2009) Interobserver and intraobserver reliability of Cobb angle measurement: endplate versus pedicle as bony landmarks for measurement: a statistical analysis. J Pediatr Orthop 29:749–754

    Article  PubMed  Google Scholar 

  • Melikian R, Yoon ST, Kim JY, Park KY, Yoon C, Hutton W (2016) Sagittal plane correction using the lateral transpsoas approach: a biomechanical study on the effect of cage angle and surgical technique on segmental lordosis. Spine 41(17):E1016–E1021

    Article  PubMed  Google Scholar 

  • Miller CA, Ledonio CG, Hunt MA, Siddiq F, Polly DW (2016) Reliability of the planned pedicle screw trajectory versus the actual pedicle screw trajectory using intra-operative 3D CT and image guidance. Int J Spine Surg 10:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrissy RT et al (1990) Measurement of the Cobb angle on radiographs of patients who have scoliosis: evaluation of intrinsic error. J Bone Joint Surg Am 72:320–327

    Article  CAS  PubMed  Google Scholar 

  • Mummaneni PV, Shaffrey CI, Lenke LG et al (2014) The minimally invasive spinal deformity surgery algorithm: a reproducible rational framework for decision making in minimally invasive spinal deformity surgery. Neurosurg Focus 36(5):E6

    Article  PubMed  Google Scholar 

  • O’Brien MF, Kuklo TR, Blanke KM et al (2004) Radiographic measurement manual. Medtronic Sofamor Danek, Memphis, pp 47–108

    Google Scholar 

  • Phan K, Rao PJ, Scherman DB, Dandie G, Mobbs RJ (2015) Lateral lumbar interbody fusion for sagittal balance correction and spinal deformity. J Clin Neurosci 22(11):1714–1721

    Article  PubMed  Google Scholar 

  • Ponte A, Orlando G, Siccardi GL (2018) The true ponte osteotomy: by the one who developed it. Spine Deform 6(1):2–11

    Article  PubMed  Google Scholar 

  • Potter BK, Lenke LG, Kuklo TR (2004) Prevention and management of iatrogenic flatback deformity. J Bone Joint Surg Am 86-A(8):1793–1808

    Article  Google Scholar 

  • Rohlmann A, Richter M, Zander T, et al (2006) Effect of different surgical strategies on screw forces after correction of scoliosis with a VDS implant. Eur Spine J 15(4):457–464

    Article  PubMed  PubMed Central  Google Scholar 

  • Roussouly P, Nnadi C (2010) Sagittal plane deformity: an overview of interpretation and management. Eur Spine J 19(11):1824–1836

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan D et al (2014) T1 pelvic angle (TPA) effectively evaluates sagittal deformity and assesses radiographical surgical outcomes longitudinally. Spine 39(15):1203–1210

    Article  PubMed  Google Scholar 

  • Schwab F et al (2005) Adult scoliosis: prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine (Phila Pa 1976) 30:1082–1085

    Article  Google Scholar 

  • Schwab F, Farcy JP, Bridwell K et al (2006a) A clinical impact classification of scoliosis in the adult. Spine 31:2109–2114

    Article  PubMed  Google Scholar 

  • Schwab F et al (2006b) A clinical impact classification of scoliosis in the adult. Spine (Phila Pa 1976) 31:2109–2114

    Article  Google Scholar 

  • Schwab F et al (2009) Sagittal plane considerations and the pelvis in the adult patient. Spine (Phila Pa 1976) 34:828–1833

    Google Scholar 

  • Schwab F, Patel A, Ungar B, Farcy JP, Lafage V (2010) Adult spinal deformity – postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine 35(25):2224–2231

    Article  PubMed  Google Scholar 

  • Schwab F et al (2013) Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity. Spine 38(13):E803–E812

    Article  PubMed  Google Scholar 

  • Schwab F, Blondel B, Chay E et al (2015) The comprehensive anatomical spinal osteotomy classification. Neurosurgery 76(Suppl 1):S33–S41

    Article  PubMed  Google Scholar 

  • Shufflebarger H, Suk SI, Mardjetko S (2006) Debate: determining the upper instrumented vertebra in the management of adult degenerative scoliosis: stopping at T10 versus L1. Spine 31(19 Suppl):S185–S194

    Article  PubMed  Google Scholar 

  • Smith J, Shaffrey C, Berven S et al (2009a) Operative vs. non-operative treatment of leg pain in adults with scoliosis: a retrospective review of a prospective multicenter database with two-year follow-up. Spine 34(16):1693–1698

    Article  PubMed  Google Scholar 

  • Smith J, Shaffrey C, Berven S et al (2009b) Improvement of back pain with operative and non-operative treatment in adults with scoliosis. Neurosurgery 65(1):86–93

    Article  PubMed  Google Scholar 

  • Smith JS et al (2009c) Operative versus nonoperative treatment of leg pain in adults with scoliosis: a retrospective review of a prospective multicenter database with two-year follow-up. Spine (Phila Pa 1976) 34:1693–1698

    Article  Google Scholar 

  • Smith JS, Sansur CA, Donaldson WF et al (2011) Short-term morbidity and mortality associated with correction of thoracolumbar fixed sagittal plane deformity: a report from the Scoliosis Research Society Morbidity and Mortality Committee. Spine 36(12):958–964

    Article  PubMed  Google Scholar 

  • Smith-Petersen MH, Larson CB, Aufranc OE (1945) Osteotomy of the spine for the correction of flexion deformity in rheumatoid arthritis. J Bone Joint Surg Am 27:1–11

    Google Scholar 

  • Stokes IA (1994) Three-dimensional terminology of spinal deformity: a report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine (Phila Pa 1976) 19:236–248

    Article  CAS  Google Scholar 

  • Suk SI, Lee CK, Min HJ, Cho KH, Oh JH (1994) Comparison of Cotrel-Dubousset pedicle screws and hooks in the treatment of idiopathic scoliosis. Int Orthop 18(6):341–346

    Article  CAS  PubMed  Google Scholar 

  • Suk SI, Lee CK, Kim WJ, Chung YJ, Park YB (1995) Segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis. Spine 20(12):1399–1405

    Article  CAS  PubMed  Google Scholar 

  • Suk SI, Kim JH, Kim WJ, Lee SM, Chung ER, Nah KH (2002) Posterior vertebral column resection for severe spinal deformity. Spine 27:2374–2382

    Article  PubMed  Google Scholar 

  • Suk SI, Chung ER, Kim JH, Kim SS, Lee JS, Choi WK (2005a) Posterior vertebral column resection for severe rigid scoliosis. Spine 30:1682–1687

    Article  PubMed  Google Scholar 

  • Suk SI, Chung ER, Lee SM, Lee JH, Kim SS, Kim JH (2005b) Posterior vertebral column resection in fixed lumbosacral deformity. Spine 30:E703–E710

    Article  PubMed  Google Scholar 

  • Thomsen K, Christensen FB, Eiskjaer SP et al (1997) The effect of pedicle screw instrumentation on functional outcome and fusion rates in posterolateral lumbar spinal fusion: a prospective, randomized clinical study. Spine 22(24):2813–2822

    Article  CAS  PubMed  Google Scholar 

  • Uribe JS, Smith DA, Dakwar E et al (2012) Lordosis restoration after anterior longitudinal ligament release and placement of lateral hyperlordotic interbody cages during the minimally invasive lateral transpsoas approach: a radiographic study in cadavers. J Neurosurg Spine 17(5):476–485

    Article  PubMed  Google Scholar 

  • West JL, Bradford DS, Ogilvie JW (1991) Results of spinal arthrodesis with pedicle screw-plate fixation. J Bone Joint Surg Am 73(8):1179–1184

    Article  PubMed  Google Scholar 

  • Zdeblick TA, Becker PS, McAfee PC et al (1991) Neuropathologic changes with experimental spinal instrumentation: transpedicular versus sublaminar fixation. J Spinal Disord 4(2):221–228

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Patel .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Singh Hundal, R., Oppenlander, M., Aleem, I., Patel, R. (2020). Scoliosis Instrumentation Systems. In: Cheng, B. (eds) Handbook of Spine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-33037-2_64-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33037-2_64-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33037-2

  • Online ISBN: 978-3-319-33037-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics