Skip to main content

Apicomplexa

  • Living reference work entry
  • First Online:
Handbook of the Protists

Abstract

The phylum Apicomplexa is a large group of parasitic protists with more than 6,000 described and possibly thousands of undescribed species. All species are obligatory parasites, and potentially every vertebrate and majority of invertebrates host at least one apicomplexan species. More frequently apicomplexans are specialists with rather high host specificity; nevertheless, generalists with low host specificity exist. Many species are highly pathogenic to their host including human and domestic animals and from medical perspective represent the most important eukaryotic parasites. Coccidians are omnipresent in vertebrates, e.g., virtually all poultry and rabbits are infected by several host-specific Eimeria spp.; theileriosis is responsible for enormous losses in cattle farming; about 20% of global human population is infected by Toxoplasma gondii; and, finally, Plasmodium falciparum and other Plasmodium species cause globally distributed malaria, which kills millions of people in tropical countries.

The phylum Apicomplexa includes morphologically and ecologically diverse protists, such as the gregarines, cryptosporidia, coccidia, haemosporidia, and piroplasms. The life cycle of majority of Apicomplexa involves sexual and asexual multiplication in the parasitized host and an environmentally resilient cyst forms. Transmission strategies are diverse, from direct transmission to intricate cycles in trophic webs between predators and their prey or involving arthropod vectors.

The phylum is highly successful, thanks to morphological and molecular adaptations. The name is derived from two Latin words, apex (top) and complexus (infolds), and refers to a set of organelles composed from spirally arranged microtubules, polar ring(s), and secretory bodies, such as rhoptries and micronemes. Apical complex structures mediate entry of the parasite into the host cells, where they usually survive inside a parasitophorous vacuole. Most apicomplexans possess a unique organelle called the apicoplast, which is a highly reduced non-photosynthetic plastid, which retains few functions essential for a parasite survival. The phylum evolved from a photosynthetic flagellate, and core apicomplexans form a sister group to a free-living marine and freshwater protists (Chromera, Vitrella, and Colpodella).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Parasitism is a type of symbiotic relationship between two different organisms – parasite and host. Three distinct types of parasitism are considered: biotroph, hemibiotroph, and necrotroph. Apicomplexans should be classified as biotrophs and partially as hemibiotrophs. Necrotrophs utilize dead animal tissues as a source of nutrients, while apicomplexans benefit from a prolonged, close association with the living host cells only.

References

  • Adl, S. M., Simpson, A. G., Lane, C. E., Lukeš, J., Bass, D., Bowser, S. S., et al. (2012). The revised classification of eukaryotes. Journal of Eukaryotic Microbiology, 59, 429–493.

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen, P. C., & Fetterer, R. H. (2002). Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry. Clinical Microbiology Review, 15, 58–65.

    Article  CAS  Google Scholar 

  • Al-Olayan, E. M., Beetsma, A. L., Butcher, G. A., Sinden, R. E., & Hurd, H. (2002). Complete development of mosquito phases of the malaria parasite in vitro. Science, 295, 677–679.

    Article  CAS  PubMed  Google Scholar 

  • Bartošová-Sojková, P., Oppenheim, R. D., Soldati-Favre, D., & Lukeš, J. (2015). Epicellular apicomplexans: Parasites “On the Way In”. PLoS Pathogens, 11, e1005080.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baum, J., Gilberger, T. W., Frischknecht, F., & Meissner, M. (2008). Host-cell invasion by malaria parasites: Insights from Plasmodium and Toxoplasma. Trends in Parasitology, 24, 557–563.

    Article  CAS  PubMed  Google Scholar 

  • Belli, S. I., Smith, N. C., & Ferguson, D. J. (2006). The coccidian oocyst: A tough nut to crack. Trends in Parasitology, 22, 416–423.

    Article  CAS  PubMed  Google Scholar 

  • Besteiro, S., Michelin, A., Poncet, J., Dubremetz, J. F., & Lebrun, M. (2009). Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathogens, 5, e1000309.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bishop, R., Musoke, A., Morzaria, S., Gardner, M., & Nene, V. (2004). Theileria: Intracellular protozoan parasites of wild and domestic ruminants transmitted by ixodid ticks. Parasitology, 129, S271–S283.

    Article  PubMed  Google Scholar 

  • Cavalier-Smith, T. (1999). Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. Journal of Eukaryotic Microbiology, 46, 347–366.

    Article  CAS  PubMed  Google Scholar 

  • Clark, E. L., Macdonald, S. E., Thenmozhi, V., Kundu, K., Garg, R., Kumar, S., et al. (2016). Cryptic Eimeria genotypes are common across the southern but not northern hemisphere. International Journal for Parasitology, 46, 537–544.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox, F. E. (2010). History of the discovery of the malaria parasites and their vectors. Parasites and Vectors, 3, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cumbo, R. V., Baird, A. H., Moore, R. B., Negri, A. P., Neilan, B. A., Salih, A., van Oppen, M. J. H., Wang, Y., & Marquis, C. P. (2013). Chromera velia is endosymbiotic in larvae of the reef corals Acropora digitifera and A. tenuis. Protist, 164, 237–244.

    Article  PubMed  Google Scholar 

  • de Koning-Ward, T. F., Gilson, P. R., & Crabb, B. S. (2015). Advances in molecular genetic systems in malaria. Nature Reviews Microbiology, 13, 373–387.

    Article  PubMed  Google Scholar 

  • Delwiche, C. F. (1999). Tracing the thread of plastid diversity through the tapestry of life. American Naturalist, 154, S164–S177.

    Article  CAS  PubMed  Google Scholar 

  • Denny, P., Preiser, P., Williamson, I., & Wilson, I. (1998). Evidence for single origin of the 35 kb plastid DNA in apicomplexans. Protist, 149, 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Desportes, I., & Schrével, J. (2013). The gregarines: The early branching apicomplexa: Treatise on zoology-anatomy, taxonomy, biology. Boston: Brill Academic Publishers 781 pp.

    Google Scholar 

  • Dubey, J. P. (2014). The history and life cycle of Toxoplasma gondii, Toxoplasma gondii, Chapter 1 (2nd ed.pp. 1–17). Boston: Academic.

    Google Scholar 

  • Duszynski, D. W., & Couch, L. (2013). The biology and identification of the Coccidia (Apicomplexa) of rabbits of the world. Amsterdam: Elsevier 352 pp.

    Google Scholar 

  • Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., & Taylor, F. J. R. (2004). The evolution of modern eukaryotic phytoplankton. Science, 305, 354–360.

    Article  CAS  PubMed  Google Scholar 

  • Feagin, J. E. (1992). The 6-Kb element of Plasmodium falciparum encodes mitochondrial cytochrome genes. Molecular and Biochemical Parasitology, 52, 145–148.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson, D. J., Sahoo, N., Pinches, R. A., Bumstead, J. M., Tomley, F. M., & Gubbels, M. J. (2008). MORN1 has a conserved role in asexual and sexual development across the apicomplexa. Eukaryotic Cell, 7, 698–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flegontov, P., Michálek, J., Janouškovec, J., Lai, H., Jirků, M., Hajdušková, E., et al. (2015). Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Molecular Biology and Evolution, 32, 1115–1131.

    Article  CAS  PubMed  Google Scholar 

  • Flegr, J. (2007). Effects of Toxoplasma on human behaviour. Schizophrenia Bulletin, 33, 757–760.

    Article  PubMed  PubMed Central  Google Scholar 

  • Flegr, J. (2013). Influence of latent Toxoplasma infection on human personality, physiology and morphology: pros and cons of the Toxoplasma-human model in studying the manipulation hypothesis. Journal of Experimental Biology, 216, 127–133.

    Article  PubMed  Google Scholar 

  • Foth, B. J., & McFadden, G. I. (2003). The apicoplast: A plastid in Plasmodium falciparum and other Apicomplexan parasites. International Review of Cytology, 224, 57–110.

    Article  PubMed  Google Scholar 

  • Gething, P. W., Patil, A. P., Smith, D. L., Guerra, C. A., Elyazar, I. R., Johnston, G. L., et al. (2011). A new world malaria map: Plasmodium falciparum endemicity in 2010. Malaria Journal, 10, 378.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gile, G. H., & Slamovits, C. H. (2013). Transcriptomic analysis reveals evidence for a cryptic plastid in the colpodellid Voromonas pontica, a close relative of chromerids and apicomplexan parasites. PLoS ONE, 9, e96258.

    Article  Google Scholar 

  • Gubbels, M. J., & Duraisingh, M. T. (2012). Evolution of apicomplexan secretory organelles. International Journal for Parasitology, 42, 1071–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heintzelman, M. B. (2015). Gliding motility in apicomplexan parasites. Seminars in Cell and Developmental Biology, 46, 135–142.

    Article  PubMed  Google Scholar 

  • Howe, D. K., & Sibley, L. D. (1995). Toxoplasma gondii comprises three clonal lineages: Correlation of parasite genotype with human disease. The Journal of Infectious Diseases, 172, 1561–1566.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, L. A., Waldron, S. J., Weier, H. M., Nicoll, C. L., & Cooke, B. M. (2001). Babesia bovis: Culture of laboratory-adapted parasite lines and clinical isolates in a chemically defined medium. Experimental Parasitology, 99, 168–174.

    Article  CAS  PubMed  Google Scholar 

  • Janouškovec, J., Horák, A., Oborník, M., Lukeš, J., & Keeling, P. J. (2010). A common red algal origin of the apicomplexan, dinoflagellate and heterokont plastids. Proceedings of National Academy of Sciences U.S.A., 107, 10949–10954.

    Article  Google Scholar 

  • Janouškovec, J., Tikhonenkov, D. V., Burki, F., Howe, A. T., Kolísko, M., Mylnikov, A. P., & Keeling, P. J. (2015). Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proceedings of National Academy of Sciences USA, 112, 10200–10207.

    Article  Google Scholar 

  • Jirků, M., Modrý, D., Šlapeta, J. R., Koudela, B., & Lukeš, J. (2002). The phylogeny of Goussia and Choleoeimeria (Apicomplexa: Eimeriorina) and the evolution of excystation structures in coccidia. Protist, 153, 379–390.

    Article  PubMed  Google Scholar 

  • Karadjian, G., Chavatte, J.-M., & Landau, I. (2015). Systematic revision of the adeleid haemogregarines, with creation of Bartazoon n. g., reassignment of Hepatozoon argantis Garnham, 1954 to Hemolivia, and molecular data on Hemolivia stellata. Parasite, 22, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keeling, P. J. (2004). Reduction and compaction in the genome of the apicomplexan parasite Cryptosporidium parvum. Developmental Cell, 6, 614–616.

    Article  CAS  PubMed  Google Scholar 

  • Keeling, P. J. (2013). The number, speed, and impact of plastid endosymbioses on eukaryotic evolution. Annual Reviews of Plant Biology, 64, 583–607.

    Article  CAS  Google Scholar 

  • Keeling, P. J., & Rayner, J. C. (2015). The origins of malaria: There are more things in heaven and earth. Parasitology, 142, S16–S25.

    Article  PubMed  Google Scholar 

  • Keithly, J. S., Langreth, S. G., Buttle, K. F., & Mannella, C. A. (2005). Electron tomographic and ultrastructural analysis of the Cryptosporidium parvum relict mitochondrion, its associated membranes, and organelles. Journal of Eukaryotic Microbiology, 52, 132–140.

    Article  PubMed  Google Scholar 

  • Kořený, L., Sobotka, R., Janouškovec, J., Keeling, P.J., Oborník, M. (2011). Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites. Plant Cell, 23, 3454–3462.

    Google Scholar 

  • Kotloff, K. L., Nataro, J. P., Blackwelder, W. C., Nasrin, D., Farag, T. H., Panchalingam, S., et al. (2013). Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet, 382, 209–222.

    Article  PubMed  Google Scholar 

  • Leander, B. S. (2008). Marine gregarines: Evolutionary prelude to the apicomplexan radiation? Trends in Parasitology, 24, 60–67.

    Article  PubMed  Google Scholar 

  • Leander, B. S., Clopton, R. E., & Keeling, P. J. (2003a). Phylogeny of gregarines (Apicomplexa) as inferred from small-subunit rDNA and ß-tubulin. International Journal of Systematic and Evolutionary Microbiology, 53, 345–354.

    Article  CAS  PubMed  Google Scholar 

  • Leander, B. S., Kuvardina, O. N., Aleshin, V. V., Mylnikov, A. P., & Keeling, P. J. (2003b). Molecular phylogeny and surface morphology of Colpodella edax (Alveolata): Insights into the phagotrophic ancestry of apicomplexans. Journal of Eukaryotic Microbiology, 50, 334–340.

    Article  PubMed  Google Scholar 

  • Levine, N. D. (1988). The protozoan phylum Apicomplexa, Volume I (pp. 203), Volume II (pp. 154). Boca Raton: CRC Press.

    Google Scholar 

  • Lobo, C. A., Cursino-Santos, J. R., Alhassan, A., & Rodrigues, M. (2013). Babesia: An emerging infectious threat in transfusion medicine. PLoS Pathogens, 9, e1003387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKenzie, W. R., Schell, W. L., Blair, K. A., Addiss, D. G., Peterson, D. E., Hoxie, N. J., et al. (1995). Massive outbreak of waterborne cryptosporidium infection in Milwaukee, Wisconsin: Recurrence of illness and risk of secondary transmission. Clinical Infection Diseases, 21, 57–62.

    Article  CAS  Google Scholar 

  • Mans, B. J., Pienaar, R., & Abdalla, A. L. (2015). A review of Theileria diagnostics and epidemiology. International Journal for Parasitology: Parasites and Wildlife, 4, 104–118.

    PubMed  PubMed Central  Google Scholar 

  • Martinaud, G., Billaudelle, M., & Moreau, J. (2009). Circadian variation in shedding of the oocysts of Isospora turdi (Apicomplexa) in blackbirds (Turdus merula): an adaptative trait against desiccation and ultraviolet radiation. International Journal for Parasitology, 39, 735–739.

    Article  CAS  PubMed  Google Scholar 

  • Moore, R. B., Oborník, M., Janouškovec, J., Chrudimský, T., Vancová, M., Green, D. H., et al. (2008). A photosynthetic alveolate closely related to apicomplexan parasites. Nature, 452, 959–963.

    Article  Google Scholar 

  • Morrison, D. A. (2009). Evolution of the Apicomplexa: Where are we now? Trends in Parasitology, 25, 375–382.

    Article  PubMed  Google Scholar 

  • Morrissette, N. S., & Sibley, L. D. (2002). Cytoskeleton of apicomplexan parasites. Microbiology and Molecular Biology Reviews, 66, 21–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller, J., & Hemphill, A. (2013). In vitro culture systems for the study of apicomplexan parasites in farm animals. International Journal for Parasitology, 43, 115–124.

    Article  PubMed  Google Scholar 

  • Oborník, M., & Lukeš, J. (2013). Cell biology of chromerids, the autotrophic relatives to apicomplexan parasites. International Review of Cell and Molecular Biology, 306, 333–369.

    Article  PubMed  Google Scholar 

  • Oborník, M., & Lukeš, J. (2015). The organellar genomes of Chromera and Vitrella, the phototrophic relatives of Apicomplexan parasites. Annual Review of Microbiology, 69, 129–144.

    Article  PubMed  Google Scholar 

  • Oborník, M., Jirků, M., Šlapeta, J. R., Modrý, D., Koudela, B., & Lukeš, J. (2002). Notes on coccidian phylogeny, based on the apicoplast small subunit ribosomal DNA. Parasitology Research, 88, 360–363.

    Article  PubMed  Google Scholar 

  • Oborník, M., Janouškovec, J., Chrudimský, T., & Lukeš, J. (2009). Evolution of the apicoplast and its hosts: From heterotrophy to autotrophy and back again. International Journal for Parasitology, 39, 1–12.

    Article  PubMed  Google Scholar 

  • Oborník, M., Vancová, M., Lai, D. H., Janouškovec, J., Keeling, J. P., & Lukeš, J. (2011). Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of Apicomplexa, Chromera velia. Protist, 162, 115–130.

    Article  PubMed  Google Scholar 

  • Oborník, M., Modrý, D., Lukeš, M., Černotíková-Stříbrná, E., Cihlář, J., Tesařová, M., et al. (2012). Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist, 163, 306–323.

    Article  PubMed  Google Scholar 

  • Oborník, M., Kručinská, J., & Esson, H. (2016). Life cycles of chromerids resemble those of colpodellids and apicomplexan parasites. Perspectives in Phycology, 3, 21–27.

    Article  Google Scholar 

  • Outlawa, D. C., & Ricklefs, R. E. (2011). Rerooting the evolutionary tree of malaria parasites. Proceedings of National Academy of Sciences USA, 108, 13183–13187.

    Article  Google Scholar 

  • Pawlowski, J., Audic, S., Adl, S., Bass, D., Belbahri, L., Berney, C., et al. (2012). CBOL Protist Working Group: Barcoding eukaryotic richness beyond the animal, plant and fungal kingdoms. PLoS Biology, 10, e1001419.

    Google Scholar 

  • Peirce, M. A. (2005). A checklist of the valid avian species of Babesia (Apicomplexa: Piroplasmorida), Haemoproteus, Leucocytozoon (Apicomplexa: Haemosporida), and Hepatozoon (Apicomplexa: Haemogregarinidae). Journal of Natural History, 39, 3621–3632.

    Article  Google Scholar 

  • Perkins, F. O., Barta, J. R., Clopton, R. E., Peirce, M. A., & Upton, S. J. (2000). Phylum Apicomplexa Levine, 1970. In J. J. Lee, G. F. Leedale, & P. Bradbury (Eds.), The illustrated guide to the protozoa (Vol. I, 2nd ed., pp. 190–369). Lawrance: Society of Protozoologists.

    Google Scholar 

  • Portman, N., & Šlapeta, J. (2014). The flagellar contribution to the apical complex: A new tool for the eukaryotic Swiss Army knife. Trends in Parasitology, 30, 58–64.

    Article  PubMed  Google Scholar 

  • Prugnolle, F., Durand, P., Ollomo, B., Duval, L., Ariey, F., Arnathau, C., et al. (2011). A fresh look at the origin of Plasmodium falciparum, the most malignant malaria agent. PLoS Pathogens, 7, e1001283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichel, M. P., Alejandra Ayanegui-Alcerreca, M., Gondim, L. F., & Ellis, J. T. (2013). What is the global economic impact of Neospora caninum in cattle – the billion dollar question. International Journal for Parasitology, 43, 133–142.

    Article  PubMed  Google Scholar 

  • Schnittger, L., Rodriguez, A. E., Florin-Christensen, M., & Morrison, D. (2012). Babesia: A world emerging. Infection, Genetics and Evolution, 12, 1788–1809.

    Article  PubMed  Google Scholar 

  • Schrével, J. (1971). Observations biologiques et ultrastructurales sur les Selenidiidae et leurs conséquences sur la systématique des Grégarinomorphes. Journal of Protozoology, 18, 448–470.

    Article  Google Scholar 

  • Schuster, F. L. (2002). Cultivation of Plasmodium spp. Clinical Microbiology Reviews, 15, 355–364.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seeber, F., & Steinfelder, S. (2016). Recent advances in understanding apicomplexan parasites. F1000Research, 5, 1369.

    Article  Google Scholar 

  • Sharman, P. A., Smith, N. C., Wallach, M. G., & Katrib, M. (2010). Chasing the golden egg: Vaccination against poultry coccidiosis. Parasite Immunology, 32, 590–598.

    CAS  PubMed  Google Scholar 

  • Shen, B., & Sibley, L. D. (2012). The moving junction, a key portal to host cell invasion by apicomplexan parasites. Current Opinion in Microbiology, 15, 449–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, B., & Daneshvar, C. (2013). Human infections and detection of Plasmodium knowlesi. Clinical Microbiology Reviews, 26, 165–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivakumara, T., Hayashidaa, K., Sugimotoc, C., & Yokoyama, N. (2014). Evolution and genetic diversity of Theileria. Infection, Genetics and Evolution, 27, 250–263.

    Article  Google Scholar 

  • Šlapeta, J. (2009). Centenary of the genus Cryptosporidium: From morphological to molecular species identification. In M. G. Ortega-Pierres, S. Cacciò, R. Fayer, T. Mank, H. Smith, & R. C. A. Thompson (Eds.), Giardia and Cryptosporidium: From molecules to disease (pp. 31–50). Cambridge, MA: CAB International.

    Chapter  Google Scholar 

  • Striepen, B., Jordan, C. N., Reiff, S., & van Dooren, G. G. (2007). Building the perfect parasite: Cell division in Apicomplexa. PLoS Pathogens, 3, 691–698.

    Article  CAS  Google Scholar 

  • Suplick, K., Akella, R., Saul, A., & Vaidya, A. B. (1988). Molecular cloning and partial sequence of a 5.8 kilobase pair repetitive DNA from Plasmodium falciparum. Molecular and Biochemical Parasitology, 30, 289–290.

    Article  CAS  PubMed  Google Scholar 

  • Telford III, S. R., Gorenflot, A., Brasseur, P., & Spielman, A. (1993). Babesial infections in humans and wildlife. In J. P. Kreier (Ed.), Parasitic protozoa (pp. 1–47). San Diego: Academic.

    Google Scholar 

  • Tenter, A. M., Heckeroth, A. R., & Weiss, L. M. (2000). Toxoplasma gondii: From animals to humans. International Journal for Parasitology, 30, 1217–1258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenter, A. M., Barta, J. R., Beveridge, I., Duszynski, D. W., Mehlhorn, H., Morrison, D. A., et al. (2002). The conceptual basis for a new classification of the coccidia. International Journal for Parasitology, 32, 595–616.

    Article  PubMed  Google Scholar 

  • Tosso, M. A., & Omoto, C. K. (2007). Gregarina niphandroides may lack both a plastid genomes and organelle. Journal of Eukaryotic Microbiology, 54, 66–72.

    Article  Google Scholar 

  • Uilenberg, G. (2006). Babesia – A historical overview. Veterinary Parasitology, 138, 3–10.

    Article  PubMed  Google Scholar 

  • Valigurová, A., Jirků, M., Koudela, B., Gelnar, M., Modrý, D., & Šlapeta, J. (2008). Cryptosporidia: Epicellular parasites embraced by the host cell membrane. International Journal for Parasitology, 38, 913–922.

    Article  PubMed  Google Scholar 

  • Valkiūnas, G. (2004). Avian malaria parasites and other haemosporidia. Boca Raton: CRC Press 346 p.

    Book  Google Scholar 

  • Voříšek, P., Votýpka, J., Zvára, K., & Svobodová, M. (1998). Heteroxenous coccidia increase the predation risk of parasitized rodents. Parasitology, 117, 521–524.

    Article  PubMed  Google Scholar 

  • Weatherby, K., Murray, S., Carter, D., & Šlapeta, J. (2011). Surface and flagellar morphology of the motile form of Chromera velia revealed by field-emission scanning electron microscopy. Protist, 162, 142–153.

    Article  PubMed  Google Scholar 

  • Weiss, L. M., & Kim, K. (2014). Toxoplasma gondii: The model apicomplexan – Perspectives and methods. Amsterodam, Academic Press, 445 p.

    Google Scholar 

  • Woo, Y. H., Ansari, H., Otto, T. D., Klinger, C., Kolísko, M., Michálek, J., et al. (2015). Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife, 4, e06974.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, G., Marchewska, M. J., & Keithly, J. S. (2000). Cryptosporidium parvum appears to lack the plastid genome. Microbiology, 146, 315–321.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Kateřina Albrechtová, Břetislav Koudela, Brian Leander, Miloslav Jirků, Michal Pakandl, Andrea Valigurová, and Jiří Vávra for providing some figures and/or samples and Dana Nováková for help with drawings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Lukeš .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Votýpka, J., Modrý, D., Oborník, M., Šlapeta, J., Lukeš, J. (2016). Apicomplexa. In: Archibald, J., et al. Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32669-6_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32669-6

  • Online ISBN: 978-3-319-32669-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics