Skip to main content

Eddy Current Testing

  • Living reference work entry
  • First Online:
Book cover Handbook of Advanced Non-Destructive Evaluation

Abstract

In various NDT methods, eddy current testing (ECT) technique is widely used for surface and near surface defect inspection, and characterization of electrical conductive materials. This chapter gives brief introduction of theories and applications of advanced ECT, with emphases on the probe design and numerical simulation methods. The chapter moves from short historical and status reviews of the ECT technique, a basic understanding of ECT principles, to state of the art of the testing method in the first section. As bases of ECT numerical simulation methods, theories of electromagnetics related to the advanced ECT is presented in section “Theory of Electromagnetics for ECT Problem”. The topics include basic equations of the low frequency electromagnetic field, skin effect and standard depth of penetration in ECT, and sensitivity and influence factors in ECT inspection. In section “Numerical Methods for Eddy Current Testing”, numerical methods for the three-dimensional ECT problem are described in terms of the A-ϕ, Ar formulations, and FEM and BEM methods. In addition, the equations for calculating ECT signals from the eddy current field are described based on the Biot-Savart’s law and the reciprocity principle at the end of the section. Due to advancement in ECT probe design and optimization, in section “Design and Optimization of ECT Probes”, typical types of ECT probes and magnetic field sensors are introduced. Later, numerical designs of various ECT probes are presented. Furthermore, a phenomenological strategy based on a simplified relationship between the source magnetic field and the induced eddy current is described for evaluation of crack-probe interaction and detectability of ECT probes. At the end of the section, procedures for optimal design of advanced ECT probes for crack detection are given. In section “Applications of Advanced Numerical Analysis for ECT”, progress in forward and inverse numerical techniques and schemes for simulation of ECT problems are explained in detail. Specific numerical approaches are utilized for the ECT signal simulation and crack profile reconstruction by using a deterministic optimization method, an artificial intelligent method, and stochastic optimization methods. The chapter gives good reference for studentsand researchers in the field of ECT and computational electromagnetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Achenbach JD (2000) Quantitative nondestructive evaluation. Int J Solids Struct 37:1–27

    Article  MathSciNet  MATH  Google Scholar 

  • Atherton DL (1995) Remote field eddy current inspection. IEEE Trans Magn 31(6):4142–4147

    Article  MathSciNet  Google Scholar 

  • Auld BA, Moulder JC (1999) Review of advances in quantitative eddy current nondestructive evaluation. J Nondestruct Eval 18:3–36

    Article  Google Scholar 

  • Burke SK (1986) Impedance of a horizontal coil above a conducting half space. J Phys D Appl Phys 19:1159–1173

    Article  Google Scholar 

  • Bowler J (1987) Eddy current calculations using half-space Green’s functions. J Appl Phys 61(3):833–839

    Article  Google Scholar 

  • Badics Z, Pavo J, Komatsu H (1998) Fast flaw reconstruction from 3D eddy current data. IEEE Trans Magn 34:2823–2828

    Article  Google Scholar 

  • Chari MVK (1974) Finite element solution of the Eddy current problem in magnetic structures. IEEE Trans Power Appar Syst 93(1):62–72

    Article  Google Scholar 

  • Chen Z, Aoto K, Miya K (2000) Reconstruction of cracks with physical closure for signal of eddy current testing. IEEE Trans Magn 36:1018–1022

    Article  Google Scholar 

  • Cochran A, Carr C (1995) Recent progress in SQUIDs as sensors for electromagnetic NDE. Studi Appl Electromagn Mech 8:75–86

    Google Scholar 

  • Cecco VS, Drunan GV, Sharp FL (1986) Eddy current manual: volume 1: test method, NUC-CAN-AECL-7523 Rev.1, Atomic Energy of Canada Limited

    Google Scholar 

  • Chen Z, Miya K (1998a) ECT inversion using a knowledge based forward solver. J Nondestruct Eval 17(3):167–175

    Google Scholar 

  • Chen Z, Miya K (1998b) A new approach for optimal design of eddy current probes. J Nondestruct Eval 17(3):105–116

    Google Scholar 

  • Cheng W, Miya K, Chen Z (1999) Reconstruction of cracks with multiple eddy current coils using a database approach. J Nondestruct Eval 18:149–160

    Article  Google Scholar 

  • Chen Z, Miya K, Kurokawa M (1997) A distinctive featured optimization approach for ECT probes. Rev Prog Quant Nondestr Eval 16:989–996

    Article  Google Scholar 

  • Chen Z, Miya K, Kurokawa M (1999) Rapid prediction of eddy current testing signals using A-ϕ method and database. NDT&E Int 32:29–36

    Article  Google Scholar 

  • Chen Z, Rebican M, Miya K, Takagi T (2005) 3D simulation of remote field ECT by using Ar method and a new formula for signal calculation. Res Nondestr Test 16:35–53

    Article  Google Scholar 

  • Chen Z, Rebican M, Yusa N, Miya K (2006a) Fast simulation of ECT signal due to a conductive crack of arbitrary width. IEEE Trans Magn 42:683–686

    Article  Google Scholar 

  • Chen Z, Takashima H, Miya K (2004a) A hybrid database approach for simulation of remote field eddy current testing signals. Int J Appl Electromagn Mech 19:219–223

    Article  Google Scholar 

  • Chen Z, Xie S, Li Y (eds) (2015) Electromagnetic nondestructive evaluation (XVIII). IOS Press, Amsterdam

    Google Scholar 

  • Chen Z, Xie S, Li W (2011) Reconstruction of stress corrosion crack with multi-frequency ECT signals. Paper presented at the 8th international conference on flow dynamics, Tohoku University, Sendai, 8–12 Oct 2011

    Google Scholar 

  • Chen H, Xie S, Zhou H, Chen Z (2014) Numerical simulation of magnetic incremental permeability for ferromagnetic material. Int J Appl Electromagn Mech 45:379–386

    Article  Google Scholar 

  • Chen Z, Yusa N, Miya K (2008) Enhancements of ECT techniques for quantitative nondestructive testing of key structural components of nuclear power plants. Nucl Eng Des 238(7):1651–1656

    Article  Google Scholar 

  • Chen Z, Yusa N, Miya K (2009) Some advances in numerical analysis techniques for quantitative electromagnetic nondestructive evaluation. Nondestr Test Eval 24(1):69–102

    Article  Google Scholar 

  • Chen Z, Yusa N, Miya K (2004b) Advanced MFLT for detecting far side defects in a welding part of an austenitic stainless steel plate. Int J Appl Electromagn Mech 19:527–532

    Article  Google Scholar 

  • Chen Z, Yusa N, Miya K (2004c) Inversion techniques for eddy current NDE using optimization strategies and a rapid 3D forward simulator. Int J Appl Electromagn Mech 20:179–187

    Article  Google Scholar 

  • Chen Z, Yusa N, Miya K (2006b) Reconstruction of natural stress corrosion crack in coolant tubes from eddy current testing signals. Stud Appl Electromagn Mech 26:197–204

    Google Scholar 

  • Davis J (1996) Nondestructive evaluation and quality control. ASM Int, Materials Park

    Google Scholar 

  • Dodd CV (1977) The use of computer modelling in Eddy current testing. Res Tech Nondestr Test 2:429–479

    Google Scholar 

  • Dodd C, Deeds W (1968) Analytical solutions to eddy-current probe-coil problems. J Appl Phys 39:2829–2838

    Article  Google Scholar 

  • Demerdash NA, Nehl TW (1978) An evaluation of the methods of finite elements and finite differences in the solution of nonlinear electromagnetic fields in electrical machines. IEEE Trans Power Appar Syst 98(1):74–87

    Article  Google Scholar 

  • Forster F (1959) Nondestructive testing handbook, vol 2, 1st edn. Am Soc Nondestr Test, Columbus, pp 36–42

    Google Scholar 

  • Fuller E (2006) Steam generator integrity assessment guidelines, Rev 2, Report No.101298. Electric Power Research Institute, Palo Alto

    Google Scholar 

  • Fukutomi H, Takagi T, Tani J (1998) Three-dimensional finite element computation of a remote field eddy current technique to non-magnetic tubes. J JSAEM 6:343–349

    Google Scholar 

  • Hagemaier DK (1985) Eddy-current standard depth of penetration. Mater Eval 10(43):1438–1454

    Google Scholar 

  • Harvey ED (1995) Eddy current testing: theory and practice, ASNT reference manual. The American Society for Nondestructive Testing, Columbus

    Google Scholar 

  • Hayt HW (2006) Engineering electromagnetics. McGraw-Hill, New York

    Google Scholar 

  • Haus H, Melcher J (1989) Electromagnetic fields and energy. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Hellier C (2003) Handbook of nondestructive evaluation. Mcgraw-Hill, New York

    Google Scholar 

  • Hughes DV (1879) Induction-balance and experimental researches therewith. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 8:50–56

    Article  Google Scholar 

  • Huang L, He R, Zeng Z et al (2012) An extended iterative finite element model for simulating eddy current testing of aircraft skin structure. IEEE Trans Magn 48(7):2161–2165

    Article  Google Scholar 

  • He Y, Luo F, Pan M (2010) Pulsed eddy current technique for defect detection in aircraft riveted structures. NDT & E Int 43(2):176–181

    Article  Google Scholar 

  • Hernandez JH, Pacheco ER, Caleyo F (2012) Rapid estimation of artificial near-side crack dimensions in aluminium using a GMR-based eddy current sensor. NDT&E Int 51(1):94–100

    Article  Google Scholar 

  • He DF, Shiwa M, Jia JP (2011) Multi-frequency ECT with AMR sensor. NDT & E Int 44(5):438–441

    Article  Google Scholar 

  • Huang H, Sakurai N, Takagi T (2003) Design of an eddy-current array probe for crack sizing in steam generator tubes. NDT&E Int 36:515–522

    Article  Google Scholar 

  • Higashi M, Tokuhisa K, Kurokawa M (2008) Development of Eddy current testing technique for PWR Vessel’s dissimilar metal weld. J JSNDI 57(5):232–235

    Google Scholar 

  • Hashimoto M, Uesaka M, Miya K (1993) Development of magnetic field visualization system using hall device array probe. Sens Mater 4(6):313–321

    Google Scholar 

  • IAEA Training Course Series (2011) Eddy current testing at level 2: manual for syllabi, IAEA TEC-DOC-628 Rev2. International Atomic Energy Agency, Veinna

    Google Scholar 

  • Ishibashi K (1995) Eddy current analysis by the boundary integral method. IEEE Trans Magn 31:1500–1503

    Article  Google Scholar 

  • JSAEM report (1997) Report on Advanced ECT technique, JSAEM-R-9601

    Google Scholar 

  • Janousek L, Capova K, Gombarska D et al (2009) Recent Trends and Developments in Eddy Current Non-Destructive Sensing. Czech Republic, Cheb

    Google Scholar 

  • Jomdecha C, Cai W, Xie S Chen Z (2018) Analysis of magnetic flux perturbation due to conductivity variation in equivalent stress-corrosion crack. Int J Appl Electromagn Mech 2018, 59. https://doi.org/10.3233/JAE-171140

  • Janousek L, Chen Z, Yusa N (2005) Excitation with phase shifted fields-enhancing evaluation of deep cracks in eddy-current testing. NDT&E Int 38:508–515

    Article  Google Scholar 

  • Jogschies L, Klaas D, Kruppe R et al (2015) Recent developments of Magnetoresistive sensors for industrial applications. Sensors 15:28665–28689

    Article  Google Scholar 

  • Jander A, Smith C, Shneider R et al (2005) Magnetoresistive sensors for nondestructive evaluation. Paper presented at the 12th International Symposium of Nondestructive Evaluation for Health Monitoring and Diagnostics, San Diego, 8–12 Mar 2005

    Google Scholar 

  • Kojima F (1997) Numerical scheme for reconstruction of crack shape in SG tubing by using FEMBEM hybrid code and inverse analysis. Trans JSME 63:2650–2656

    Article  Google Scholar 

  • Kurokawa M (1997) Development of new eddy-current testing probe. Stud Appl Electromagn Mech 12:177–183

    Google Scholar 

  • Kreutzbruck MV, Krause HJ (2002) HTs squids for the nondestructive evaluation of composite structures. Physica C: Superconduct 368(1–4):70–79

    Google Scholar 

  • Kosmas K, Sargentis CH, Tsamakis D (2005) Non-destructive evaluation of magnetic metallic materials using hall sensors. Sens Actuators A 161(1–2):359–362

    Google Scholar 

  • Kim J, Yang G, Udpa L (2010) Classification of pulsed eddy current GMR data on aircraft structures. NDT&E Int 43:141–144

    Article  Google Scholar 

  • Li Y, Bei Y, Li D, Chen Z (2016) Gradient-field pulsed Eddy current probes for imaging of hidden corrosion in conductive structures. Sens Actuators A 238:251–265

    Article  Google Scholar 

  • Ludwig R, Dai X (1990) Numerical and analytical modeling of pulsed eddy currents in a conducting half-space. IEEE Trans Magn 26:299–307

    Article  Google Scholar 

  • Libby HL, Wandling CR (1970) Eddy current multi-parameter test for tube flaws in support region. BNWL-1468

    Google Scholar 

  • Li W, Xie S, Chen Z (2013) Reconstruction of stress corrosion cracks using signals of pulsed eddy current testing. NDT&E Int 28(2):145–154

    Google Scholar 

  • MacMaster RC (1963) Nondestructive testing handbook. The Ronald Press, New York

    Google Scholar 

  • Miya K (1995) Analytical electromagnetics and electromagnetic structures. Yokendo Press, Tokyo

    Google Scholar 

  • Mottl Z (1990) The quantitative relations between true and standard depth of penetration for air-cored probe coils in eddy current testing. NDT&E Int 23:11–18

    Google Scholar 

  • Martin JG, Gil JG, Sanchez EV (2011) Non-destructive techniques based on Eddy current testing. Sensors 11(3):2525–2565

    Article  Google Scholar 

  • Mook G, Hesse O, Uchanin V (2007) Deep penetrating Eddy currents and probes. Mater Test 49:258–264

    Article  Google Scholar 

  • Maeda K, Shimone J, Harada Y (1997) Optimization of transmit-receive coils for ECT probe with use of the 3-D FEM code. Electromagnetic nondestructive evaluation. IOS Press, Amsterdam. pp 199–206

    Google Scholar 

  • National Research Council (1997) Aging of U.S. Air Force aircraft. National Academy Press, Washington, DC

    Google Scholar 

  • Norton SJ, Bowler JR (1993) Theory of eddy current inversion. J Appl Phys 73:501–512

    Article  Google Scholar 

  • Popa RC, Miya K, Kurokawa M (1997) Optimized eddy current detection of small cracks in steam generator tubing. J Nondestruct Eval 16(3):161–173

    Google Scholar 

  • Recommanded Practice NO. SNT-TC-1A (2016) Personnel qualification and certification in nondestructive testing. American Society for Nondestructive Testing, Columbus

    Google Scholar 

  • Richard W (1996) Rules for In-service Inspection of Nuclear Power Plant Components, ASME boiler and pressure vessel code section XI. The American Society of Mechanical Engineers

    Google Scholar 

  • Ripka P (2003) Advances in fluxgate sensors. Sensors Actuators A 106(1–3):8–14

    Article  Google Scholar 

  • Rothwell E, Cloud M (2001) Electromagnetics. CRC Press, Boca Raton

    Book  Google Scholar 

  • Rebican M, Chen Z, Yusa N et al (2005) Investigation of numerical precision of 3D RFECT signal simulation. IEEE Trans Magn 41:1968–1971

    Article  Google Scholar 

  • Rebican M, Chen Z, Yusa N (2006) Shape reconstruction of multiple cracks from ECT signals by means of a stochastic method. IEEE Trans Magn 42:1079–1082

    Article  Google Scholar 

  • Reis D, Lambert M, Lesselier D (2002) Eddy-current evaluation of three-dimensional defects in a metal plate. Inverse Prob 18:1857–1871

    Article  MathSciNet  MATH  Google Scholar 

  • Ramos H, Postolache O, Alegria F (2009) Using the skin effect to estimate cracks depths in metallic structures. IEEE Instr & Meas Tech 21(12):1361–1366

    Google Scholar 

  • Pelkner M, Pohl R, Erthner T (2015) Eddy Current Testing with High-Spatial Resolution Probes Using MR Arrays as Receiver. Paper presented at the 7th International Symposium on NDT in Aerospace, Bremen, 16–18 Nov 2015

    Google Scholar 

  • Ramos HG, Ribeiro AL (2014) Present and future impact of magnetic in NDE. Procedia Eng 86:406–419

    Article  Google Scholar 

  • Postolache O, Ribeiro A, Ramos H (2012) Uniform Eddy current probe based on GMR sensor Array and image processing for NDT. IEEE Int Instr Measur Tech 8443(3):458–463

    Google Scholar 

  • Ripka P, Vopalensky M, Platil A (2003) AMR magnetometer. J Magn Magn Mater 254:639–641

    Article  Google Scholar 

  • Rebican M, Yusa N, Chen Z (2004) Reconstruction of multiple cracks in an ECT round-robin test. Int J Appl Electromagn Mech 19:399–404

    Article  Google Scholar 

  • Sabbagh H, Sabbagh L (1986) An eddy-current model for three-dimensional inversion. IEEE Trans Magn 22:282–291

    Article  Google Scholar 

  • Tai C (1971) Dyadic green functions in electromagnetic theory. Oxford University Press, Oxford

    Google Scholar 

  • Tumanski S (2007) Induction coil sensors- a review. Meas Sci Technol 18(3):R31–R46

    Article  Google Scholar 

  • Thompson DO, Chimenti DE (1992) Review of Progress in quantitative nondestructive evaluation, vol 15A. Plenum Press, New York, pp 781–788

    Book  Google Scholar 

  • Takagi T, Huang H, Fukutomi H (1998) Numerical evaluation of correlation between crack size and Eddy current testing signal by a very fast simulator. IEEE Trans Magn 34(5):2581–2584

    Article  Google Scholar 

  • Takagi T, Hashimoto H, Fukutomi H (1994) Benchmark models of eddy current testing for steam generator tube: experiment and numerical analysis. Int J Appl Electromag in Materials 4(5):149–162

    Google Scholar 

  • Tegopoulos JA, Kriezis EE (1985) Eddy current in linear conducting media. Elsevier, Amsterdam

    Google Scholar 

  • Tian GY, Li Y, Mandache C (2009) Study of lift-off invariance for pulsed Eddy-current signals. IEEE Trans Magn 45:184–191

    Article  Google Scholar 

  • Tamburrino A, Rubinacci G (2002) A new non-iteration inversion method for electrical resistance tomography. Inverse Prob 18:1809–1829

    Article  MATH  Google Scholar 

  • Takagi T, Uesaka M, Miya K (1997a) Electromagnetic NDE research activities in JSAEM. Stud Appl Electromagn Mech 12:9–16

    Google Scholar 

  • Takagi T, Uesaka M, Miya K (1997b) Electromagnetic NDE research activities in JSAEM, electromagnetic nondestructive evaluation. IOS Press, Amsterdam. pp 9–16

    Google Scholar 

  • Udpa S, Moore P (2004) Nondestructive testing handbook: electromagnetic testing, 3rd edn. American Society for Nondestructive Testing, Columbus, Ohio

    Google Scholar 

  • Xie S (2012) Quantitative Nondestructive Evaluation of Pipe Wall Thinning Using Pulsed Eddy Current Testing. Dissertation, Tohoku University

    Google Scholar 

  • Xie S, Chen Z, Takagi T et al (2011) Efficient numerical solver for simulation of pulsed Eddy current testing signals. IEEE Trans Magn 47:4582–4591

    Article  Google Scholar 

  • Yusa N, Chen Z, Miya K (2000) Quantitative profile evaluation of natural crack in steam generator tube from eddy current signals. Int J Appl Electromagn Mech 12:139–150

    Article  Google Scholar 

  • Yusa N, Chen Z, Miya K (2003) Large scale parallel computation for the reconstruction of natural stress corrosion cracks from eddy current testing signals. NDT&E Int 36:449–459

    Article  Google Scholar 

  • Yusa N, Chen Z, Miya K (2005) Sizing of stress corrosion cracks in piping of austenitic stainless steel from eddy current NDT signals. Nondestruct Test Eval 20:103–114

    Article  Google Scholar 

  • Yusa N, Perrin S, Mizuno K (2007a) Eddy current inspection of closed fatigue and stress corrosion cracks. Meas Sci Technol 18:3403–3408

    Article  Google Scholar 

  • Yusa N, Perrin S, Mizuno K (2007b) Numerical modeling of general cracks from the viewpoint of eddy current simulations. NDT&E Int 40:577–583

    Article  Google Scholar 

  • Zenglu S, Tsutomu Y, Hideki S (2011) Detection of damage and crack in railhead by using eddy current testing. J Electromagn Anal Appl 3:546–550

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenmao Chen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, Z., Jomdecha, C., Xie, S. (2019). Eddy Current Testing. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Non-Destructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-30050-4_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30050-4_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30050-4

  • Online ISBN: 978-3-319-30050-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics