Skip to main content

Micromagnetics

  • Living reference work entry
  • First Online:
Handbook of Advanced Non-Destructive Evaluation

Abstract

Micromagnetic materials characterization is receiving growing industrial acceptance and application due to significant improvements in sensor technology, data processing, and ease of use. The fundamental similarity between the interaction of microstructure with dislocations and magnetic domain walls is the basis of all micromagnetic approaches. This similarity leads to correlated interactions with magnetic and mechanical loads, resulting in, for example, the classical analogy between magnetic and mechanical hardness. In practical devices, a set of micromagnetic parameters is being determined in order to obtain a unique “fingerprint” of the material. In a calibration procedure, the multiparametric fingerprint is then mathematically related to target parameters such as hardness, hardening depth, strength, yield point, or residual stress. The multiparameter approach is preferred due to the fact that several material properties affect the magnetic behavior, so that a single measuring parameter will never be a unique function of a given target property. The main challenge is that sensor and part geometry are reflected in the magnetic parameter values, which makes it hard to collect calibration-relevant knowledge across several applications. Together with a growing variety of high-performance steel grades available today, this results in a need for individual, application-specific calibration. State-of-the-art micromagnetic testing systems address this issue by means of simplified, accelerated, and interactive calibration procedures and well-selected micromagnetic parameters of increased significance. The path pursued by developers today leads towards increasingly user-friendly devices with low calibration effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Altpeter I, Becker R, Dobmann G, Kern R, Theiner WA, Yashan A (2002) Robust solutions of inverse problems in electromagnetic non-destructive evaluation. Inverse Problems 18:1907–1921

    Article  MathSciNet  Google Scholar 

  • Barkhausen H (1919) Zwei mit Hilfe der neuen Verstärker entdeckte Erscheinungen. Phys Z 20:401–403

    Google Scholar 

  • Chang AM, Hallen HD, Harriott L, Hess HF, Kao HL, Kwo J, Miller RE, Wolfe R, Van Der Ziel J, Chang TY (1992) Scanning hall probe microscopy. Appl Phys Lett 61(16):1974. https://doi.org/10.1063/1.108334

    Article  Google Scholar 

  • Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley, Reading

    Google Scholar 

  • Dobmann G, Pitsch H (1988) Verfahren zum zerstörungsfreien Messen magnetischer Eigenschaften eines Prüfkörpers sowieVorrichtung zum zerstörungs-freien Messen magnetischer Eigenschaften eines Prüfkörpers. German patent DE3037932A1, April 23, 1988

    Google Scholar 

  • Heptner H, Stroppe H (1972) Magnetische und magnetinduktive Werkstoffprüfung. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  • Kneller E (1962) Ferromagnetismus. Springer, Berlin

    Book  Google Scholar 

  • Maxwell JC (1865) A dynamical theory of the electromagnetic field. Philos Trans R Soc Lond 155:459–512

    Article  Google Scholar 

  • Pitsch H (1990) Die Entwicklung und Erprobung der Oberwellenanalyse im Zeitsignal der magnetischen Tangentialfeldstärke als neues Modul des 3MA-Ansatzes. Doctoral dissertation, Saarland University, Sarbrücken

    Google Scholar 

  • Stork D (2001) Pattern classification. Wiley, New York

    MATH  Google Scholar 

  • Szielasko K (2009) Development of metrological modules for electromagnetic multiparameter materials characterization and testing. Doctoral dissertation, Saarland University, Saarbrücken (in German)

    Google Scholar 

  • Szielasko K, Kopp M, Tschuncky R, Lugin S, Altpeter I (2004) Barkhausenrausch- und Wirbelstrom mikroskopie zur ortsaufgelösten Charakterisierung von dünnen Schichten. DGZfP annual conference 2004 V13

    Google Scholar 

  • Szielasko K, Mironenko I, Altpeter I, Herrmann HG, Boller C (2013) Minimalistic devices and sensors for micromagnetic materials characterization. IEEE Trans Magn 49(1):101–104

    Article  Google Scholar 

  • Szielasko K, Kopp M, Tschuncky R and Herrmann HG (2014) Zerstörungsfreie Bestimmung von Werkstoffeigenschaften mit mikromagnetischen Multiparameter-Prüfverfahren. In: Werkstoffe in der Fertigung 1/2014, pp 45–46. ISSN 0939-2629/B 25800

    Google Scholar 

  • Tschuncky R (2011) Sensor- und geräteunabhängige Kalibrierung elektromagnetischer zerstörungsfreier Prüfverfahren zur praxisorientierten Werkstoffcharakterisierung. Doctoral dissertation, Saarland University, Saarbrücken

    Google Scholar 

  • Tschuncky R, Szielasko K, Altpeter I (2016) Hybrid methods for materials characterization. In: Hübschen G, Altpeter I, Tschuncky R, Herrmann HG (eds) Materials characterization using nondestructive evaluation (NDE) methods. Woodhead Publishing, Cambridge, pp 263–291

    Chapter  Google Scholar 

  • Weiss P (1907) L’Hypothese du Champ Moléculaire et de la Proprieté Ferromagnétique. J Phys 6:661–690

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Szielasko .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Szielasko, K., Tschuncky, R. (2018). Micromagnetics. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Non-Destructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-30050-4_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30050-4_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30050-4

  • Online ISBN: 978-3-319-30050-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics