Skip to main content

3D X-ray Tomography - Basics and Latest Developments

  • Living reference work entry
  • First Online:
Handbook of Advanced Non-Destructive Evaluation

Abstract

In the following, the basic principles of X-ray physics are discussed which includes generation and detection of X-rays and the acquisition of X-ray projection images. Further on, the process of computer-assisted sectional image calculation is briefly introduced and the latest developments in the field are mentioned. Additionally, particular issues of micro- and nano-scale X-ray Computed Tomography are described. Finally, we attempt to look forward into the upcoming future of industrial X-ray imaging systems which most probably will evolve to cognitive sensor networks by applying advanced machine-learning technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Buzug TM (2008) Computed tomography: from photon statistics to modern cone-beam CT. Springer, Berlin. ISBN-13: 978-3540394075

    Google Scholar 

  • De Man B, Fessler JA (2009) Statistical iterative reconstruction for X-ray computed tomography. In: Censor Y, Jiang M, Wang G (eds) Biomedical mathematics: promising directions in imaging, therapy planning, and inverse problems. Medical Physics Publishing, Madison

    Google Scholar 

  • Dittmann J (2009) Tomographic reconstruction from few projections based on the theory of compressed sensing. Master thesis, Chair for X-ray microscopy, Julius-Maximilians-University, Würzburg

    Google Scholar 

  • Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am 6:612

    Article  Google Scholar 

  • Fuchs T, Hanke R (2008) Task-driven design of X-ray systems for industrial inspection. In: IEEE nuclear science symposium conference record. https://doi.org/10.1109/NSSMIC.2008.4775230

  • Fuchs T, Kalender W (2003) On the correlation of pixel noise, spatial resolution and dose in computed tomography: theoretical prediction and verification by simulation and measurement. Phys Med XIX(2):153–164

    Google Scholar 

  • Gordon R, Bender R, Herman GT (1970) Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol 29:471–481

    Article  Google Scholar 

  • Hemberg O, Otendal M, Hertz HM (2003) Liquid-metal-jet anode electron-impact X-ray source. Appl Phys Lett 83:1483–1485

    Article  Google Scholar 

  • Herman GT (2009) Fundamentals of computerized tomography: image reconstruction from projections, 2nd edn. Springer, Dordrecht. ISBN 978-1-85233-617-2

    Book  Google Scholar 

  • Hounsfield GN (1973) Computerized transverse axial scanning (tomography): part 1. Description of system. Br J Radiol 46:1016–1022

    Article  Google Scholar 

  • Hubbell JH (1982) Photon mass attenuation coefficients and energy-absorption coefficients from 1 keV to 20 MeV. Int J Appl Radiat Isot 33:1260–1290

    Article  Google Scholar 

  • Hubbell JH, Seltzer SM (1989) Tables of X-Ray mass attenuation coefficients and mass energy-absorption coefficients. [Online] National Institute of Standards and Technology. http://www.nist.gov/pml/data/xraycoef/

  • Katsevich A (2004) Improved exact filtered back-projection algorithm for spiral CT. Adv Appl Math 32:681–697

    Article  MathSciNet  Google Scholar 

  • Mayo SC (2002) Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging. J Microsc 207:79–96

    Article  MathSciNet  Google Scholar 

  • Natterer F (1986) The mathematics of computerized tomography. B.G. Teubner, Stuttgart. ISBN 0-471-90959-9

    MATH  Google Scholar 

  • Otendal M (2006) A compact high-brightness liquid-metal-jet X-ray source. Doctoral thesis, Department of Applied Physics, Royal Institute of Technology, Stockholm

    Google Scholar 

  • Salamon M, Hanke R, Krüger P, Sukowski F, Uhlmann N, Voland V (2008a) Comparison of different methods for determining the size of a focal spot of microfocus X-ray tubes. Nucl Inst Methods Phys Res A 591:54–58

    Article  Google Scholar 

  • Salamon M, Hanke R, Krüger P, Uhlmann N, Voland V (2008b) Realization of a computed tomography setup to achieve resolutions below 1 μm. Nucl Inst Methods Phys Res A 591:50–53

    Article  Google Scholar 

  • Salamon M, Burtzlaff S, Voland V, Sukowski F, Uhlmann N (2009) Upcoming challenges in high resolution CT below 1 micron. Nucl Instrum Methods Phys Res A 607:176–178

    Article  Google Scholar 

  • Scholz O, Schmitt P, Kube M, Behrendt R, Uhlmann N (2009) Improvements in detector design for X-ray inspection of cast parts. SAE Int J Mater Manufac 2:134–139

    Article  Google Scholar 

  • Sidky EY, Pan X (2008) Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol 53:4777–4807

    Article  Google Scholar 

  • Stahlhut P, Ebensperger T, Zabler S, Hanke R (2013) Laboratory X-ray microscopy using a reflection target system and geometric magnification. J Phys Conf Ser 46:1–4

    Google Scholar 

  • Stahlhut P, Ebensperger T, Zabler S, Hanke R (2014) A laboratory X-ray microscopy setup using a field emission electron source and micro-structured reflection targets. Nucl Instrum Methods Phys Res, Sect B 324:4–10

    Article  Google Scholar 

  • Sukowski F, Yaneu JF, Salamon M, Ebert S, Uhlmann N (2009) Virtual detector characterization with Monte-Carlo-simulations. Nucl Instrum Methods Phys Res, Sect A 607:253–255

    Article  Google Scholar 

  • Zabler S, Fella C, Dietrich A (2012) High-resolution and high-speed CT in industry and research. In: SPIE conference: developments in X-ray tomography VIII, vol 8506

    Google Scholar 

  • Zou Y, Pan X (2004) Exact image reconstruction on PI-lines from minimum data in helical cone-beam CT. Phys Med Biol 49:941–959

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randolf Hanke .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fuchs, T.O., Hanke, R. (2018). 3D X-ray Tomography - Basics and Latest Developments. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Non-Destructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-30050-4_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30050-4_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30050-4

  • Online ISBN: 978-3-319-30050-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics