Skip to main content
Book cover

Neonatology pp 1549–1559Cite as

Neonatal Hereditary Neutropenia

  • Reference work entry
  • First Online:

Abstract

Hereditary neutropenia includes many disorders of distinct origin and variable prognosis, characterized by a reduction of the absolute neutrophil count (ANC) below 0.5 × 109/l, that predisposes patients to bacterial infections of variable severity, in particular pyogenic infections, such as cutaneous cellulitis, deep abscesses, pneumonia, and sepsis. The diagnosis of severe congenital neutropenia (SCN) is usually made on the basis of patient history and physical examination, and of a severe neutropenia with normal or near normal hemoglobin level and platelet count, while bone marrow examination reveals in most cases the typical defect of neutrophils, with myeloid cell differentiation arrest at the promyelocyte stage, and very few myelocytes and metamyelocytes.

The most common monogenic congenital neutropenia are usually classified according to the presence or absence of association with innate or adaptive immunodeficiency, or with extrahematopoietic manifestations, like involvement of the pancreas, central nervous system, heart, muscle, and skin.

Most of the forms of congenital neutropenia are extremely rare, about six cases per one million; some genes have been only found in a few families. The inheritance is monogenic, which may be autosomal (dominant or recessive), or X-linked. During the last few years, several genetic causes of neutropenia have been elucidated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   479.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ambruso DR, McCabe ER, Anderson DC et al (2003) Infectious and bleeding complications in patients with glycogen Ib. Am J Dis Child 139:691–697

    Google Scholar 

  • Ancliff PJ, Blundell MP, Cory GO et al (2006) Two novel activating mutations in the Wiskott-Aldrich syndrome protein result in congenital neutropenia. Blood 108:2182–2189

    Article  CAS  Google Scholar 

  • Aprikyan A, Liles W, Park J et al (2000) Myelocatexis, a congenital disorder of severe neutropenia characterized by accelerated apoptosis and defective expression of bcl-x in neutrophil precursors. Blood 95:320–327

    CAS  PubMed  Google Scholar 

  • Armistead PM, Wieder E, Akande O et al (2010) Cyclic neutropenia associated with T cell immunity to granulocyte proteases and a double de novo mutation in GFI1, a transcriptional regulator of ELANE. Br J Haematol 150:716–719

    Article  CAS  Google Scholar 

  • Badolato R, Fontana S, Notarangelo LD, Savoldi G (2004) Congenital neutropenia: advances in diagnosis and treatment. Curr Opin Allergy Clin Immunol 4:513–521

    Article  CAS  Google Scholar 

  • Beel K, Cotter MM, Blatny J et al (2009) A large kindred with X-linked neutropenia with an I294T mutation of the Wiskott-Aldrich syndrome gene. Br J Haematol 144:120–126

    Article  Google Scholar 

  • Boztug K, Welte K, Zeidler C, Klein C (2008) Congenital neutropenia syndromes. Immunol Allergy Clin North Am 28:259–275

    Article  Google Scholar 

  • Boztug K, Appaswamy G, Ashikov A et al (2009) A syndrome with congenital neutropenia and mutations in G6PC3. N Engl J Med 360:32–43

    Article  CAS  Google Scholar 

  • Carlsson G, Fasth A (2001) Infantile genetic agranulocytosis, morbus Kostmann: presentation of six cases from the original “Kostmann family” and a review. Acta Paediatr 90:757–764

    Article  CAS  Google Scholar 

  • Dale DC, Hammond WP (1988) Cyclic neutropenia: a clinical review. Blood Rev 2:178–185

    Article  CAS  Google Scholar 

  • Dale DC, Person RE, Bolyard AA et al (2000) Mutation in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 96:2317–2322

    CAS  PubMed  Google Scholar 

  • Dale DC, Cottle TE, Fier CJ, Bolyard AA, Bonilla MA, Boxer LA, Cham B, Freedman MH, Kannourakis G, Kinsey SE et al (2003) Severe chronic neutropenia: treatment and follow-up of patients in the Severe Chronic Neutropenia International Registry. Am J Hematol 72:82–93

    Article  Google Scholar 

  • Dell’Angelica EC, Shotelersuk V, Aguilar RC et al (1999) Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol Cell 3:11–21

    Article  Google Scholar 

  • Devriendt K, Kim AS, Mathijs G et al (2001) Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet 27:313–317

    Article  CAS  Google Scholar 

  • Donadieu J, Leblanc T, Bader Meunier B, French Severe Chronic Neutropenia Study Group et al (2005) Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French Severe Chronic Neutropenia Study Group. Haematologica 90:45–53

    PubMed  Google Scholar 

  • Donadieu J, Fenneteau O, Beaupain B, Mahlaoui N, Chantelot CB (2011) Congenital neutropenia: diagnosis, molecular bases and patient management. Orphanet J Rare Dis 6:26

    Article  Google Scholar 

  • Dong F, Brynes RK, Tidow N, Welte K, Lowenberg B, Touw IP (1995) Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med 333:487–493

    Article  CAS  Google Scholar 

  • Dror Y, Freedman MH (2002) Shwachman-Diamond syndrome. Br J Haematol 118:701–713

    Article  Google Scholar 

  • Fioredda F, Iacobelli S, van Biezen A, Gaspar B, Ancliff P, Donadieu J et al (2015) Stem cell transplantation in severe congenital neutropenia: an analysis from the European Society for Blood and Marrow Transplantation. Blood 126:1885–1892

    Article  CAS  Google Scholar 

  • Freedman MH, Bonilla MA, Fier C et al (2000) Myelodisplasia syndrome and acute myeloid leukemia in patients with congenital neutropenia receiving G-CSF therapy. Blood 96:429–436

    CAS  PubMed  Google Scholar 

  • Gerin I, Veiga-da-Cunha M, Achouri Y et al (1997) Sequence of a putative glucose 6- phosphate translocase, mutated in glycogen storage disease type Ib. FEBS Lett 419:235–238

    Article  CAS  Google Scholar 

  • Germeshausen M, Ballmaier M, Welte K (2001) Implications of mutations in hematopoietic growth factor receptor genes in congenital cytopenias. Ann N Y Acad Sci 938:305–320

    Article  CAS  Google Scholar 

  • Germeshausen M, Schulze H, Kratz C et al (2005) An acquired G-CSF receptor mutation results in increased proliferation of CMML cells from a patient with severe congenital neutropenia. Leukemia 19:611–617

    Article  CAS  Google Scholar 

  • Germeshausen M, Grudzien M, Zeidler C, Abdollahpour H, Yetgin S, Rezaei N et al (2008) Novel HAX1 mutations in patients with severe congenital neutropenia reveal isoform-dependent genotype-phenotype associations. Blood 111:4954–4957

    Article  CAS  Google Scholar 

  • Germeshausen M, Deerberg S, Peter Y, Reimer C, Kratz CP, Ballmaier M (2013) The spectrum of ELANE mutations and their implications in severe congenital and cyclic neutropenia. Hum Mutat 34:905–914

    Article  CAS  Google Scholar 

  • Gorlin RJ, Gelb B, Diaz GA et al (2000) WHIM syndrome, an autosomal dominant disorder: clinical, hematological, and molecular studies. Am J Med Genet 91:368–376

    Article  CAS  Google Scholar 

  • Han J, Goldstein LA, Hou W et al (2010) Deregulation of mitochondrial membrane potential by mitochondrial insertion of granzyme B and direct Hax-1 cleavage. J Biol Chem 285:22461–22472

    Article  CAS  Google Scholar 

  • Horwitz MS, Duan Z, Korkmaz B et al (2007) Neutrophil elastase in cyclic and severe congenital neutropenia. Blood 109:1817–1824

    Article  CAS  Google Scholar 

  • Karsunky H, Zeng H, Schmidt T, Zevnik B, Kluge R, Schmid KW, Dührsen U, Möröy T (2002) Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nat Genet 30:295–300

    Article  Google Scholar 

  • Klein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I, Schäffer AA et al (2007) HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 39:86–92

    Article  CAS  Google Scholar 

  • Kostman R (1975) Infantile genetic agranulocytosis. A review with presentation of ten new cases. Acta Paediatr Scand 64:362–368

    Article  CAS  Google Scholar 

  • Kostmann R (1956) Infantile genetic agranulocytosis (agranulocytosis infantilis hereditaria): a new recessive lethal disease in man. Almqvist and Wiksells Boktryckeri, Uppsala

    Google Scholar 

  • Lekstrom-Himes JA, Gallin JI (2000) Immunodeficiency diseases caused by defects in phagocytes. N Engl J Med 343:1703–1714

    Article  CAS  Google Scholar 

  • Moulding DA, Blundell MP, Spiller DG et al (2007) Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia. J Exp Med 204:2213–2224

    Article  CAS  Google Scholar 

  • Notarangelo LD, Miao CH, Ochs HD (2008) Wiskott-Aldrich syndrome. Curr Opin Hematol 15:30–36

    Article  CAS  Google Scholar 

  • Notarangelo LD, Savoldi G, Cavagnini S, Bennato V, Vasile S, Pilotta A, Plebani A, Porta F (2014) Severe congenital neutropenia due to G6PC3 deficiency: early and delayed phenotype in two patients with two novel mutations. Ital J Pediatr 40:80

    Article  Google Scholar 

  • Paley C, Murphy S, Karayalcin G et al (1991) Treatmemt of neutropenia in Shwachman-Diamond syndrome (SDS) with recombinant human granulocyte colony-stimulating factor (RH-GCSF). Blood 78:3a

    Google Scholar 

  • Person RE, Li FQ, Duan Z, Benson KF, Wechsler J, Papadaki HA, Eliopoulos G, Kaufman C, Bertolone SJ, Nakamoto B et al (2003) Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet 34:308–312

    Article  CAS  Google Scholar 

  • Rosenberg PS, Alter BP, Bolyard AA et al (2006) The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 107:4628–4635

    Article  CAS  Google Scholar 

  • Rosenberg PS, Alter BP, Link DC et al (2008) Neutrophil elastase mutations and risk of leukaemia in severe congenital neutropenia. Br J Haematol 140:210–213

    CAS  PubMed  Google Scholar 

  • Rosenberg PS, Zeidler C, Bolyard AA et al (2010) Stable long-term risk of leukaemia in patients with severe congenital neutropenia maintained on G-CSF therapy. Br J Haematol 150:196–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thrasher AJ, Burns SO (2010) WASP: a key immunological multitasker. Nat Rev Immunol 10:182–192

    Article  CAS  Google Scholar 

  • van der Meer LT, Jansen JH, van der Reijden BA (2010) Gfi1 and Gfi1b: key regulators of hematopoiesis. Leukemia 24:1834–1843

    Article  Google Scholar 

  • Volpi L, Roversi G, Colombo EA et al (2010) Targeted next-generation sequencing appoints c16orf57 as clericuziotype poikiloderma with neutropenia gene. Am J Hum Genet 86:72–76

    Article  CAS  Google Scholar 

  • Welte K, Zeidler C, Dale DC (2006) Severe congenital neutropenia. Semin Hematol 43:189–195

    Article  CAS  Google Scholar 

  • Westerberg LS, Meelu P, Baptista M et al (2010) Activating WASP mutations associated with X-linked neutropenia result in enhanced actin polymerization, altered cytoskeletal responses, and genomic instability in lymphocytes. J Exp Med 207:1145–1152

    Article  CAS  Google Scholar 

  • Xia J, Bolyard AA, Rodger E et al (2009) Prevalence of mutations in ELANE, GFI1, HAX1, SBDS, WAS and G6PC3 in patients with severe congenital neutropenia. Br J Haematol 147:535–542

    Article  CAS  Google Scholar 

  • Zeidler C, Schwinzer B, Welte K (2003) Congenital neutropenias. Rev Clin Exp Hematol 7:72–83

    PubMed  Google Scholar 

  • Zhuang D, Qiu Y, Kogan SC, Dong F (2006) Increased CCAAT enhancer-binding protein epsilon (C/EBPepsilon) expression and premature apoptosis in myeloid cells expressing Gfi-1 N382S mutant associated with severe congenital neutropenia. J Biol Chem 281:10745–10751

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Chirico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chirico, G., D’Ippolito, C. (2018). Neonatal Hereditary Neutropenia. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29489-6_244

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29489-6_244

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29487-2

  • Online ISBN: 978-3-319-29489-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics