Skip to main content

Diagnosis of Fetal Distress

  • Reference work entry
  • First Online:
Neonatology

Abstract

Fetal distress is a very broad term, which can be used in many clinical situations. Although it is difficult to give a precise clinical definition, obstetricians usually use this term to indicate that the fetus is becoming hypoxic. Immediate delivery has to be considered, because neurological damage may occur when the fetal brain is deprived of oxygen. Antepartum fetal testing is used to assess hypoxia in high-risk pregnancies and monitoring during labor supplies information on the status of the fetus prior to birth. However, knowledge of the fetal responses to asphyxia, together with the known evolution of fetal heart rate patterns, should allow a more accurate definition of its onset and a more rational management and timing for intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 479.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfirevic Z, Stampalija T, Gyte GM (2013a) Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev 11, CD007529

    Google Scholar 

  • Alfirevic Z, Devane D, Gyte GM (2013b) Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database Syst Rev 31(5), CD006066

    Google Scholar 

  • Alfirevic Z, Stampalija T, Medley N (2015) Fetal and umbilical Doppler ultrasound in normal pregnancy. Cochrane Database Syst Rev 4, CD001450

    Google Scholar 

  • Allen RM, Bowling FG, Oats JJ (2004) Determining the fetal scalp lactate level that indicates the need for intervention in labour. Aust N Z J Obstet Gynaecol 44:549–552

    Article  Google Scholar 

  • American College of Obstetricians and Gynecologists (2009) ACOG Practice Bulletin No. 106. Intrapartum fetal heart rate monitoring: nomenclature, interpretation, and general management principles. Obstet Gynecol 114:192–202

    Google Scholar 

  • American College of Obstetricians and Gynecologists (2010) ACOG Practice Bulletin No. 116. Management of intrapartum fetal heart rate tracings. Reaffirmed 2015 Obstet Gynecol 116:1232–1240

    Google Scholar 

  • Amer-WÃ¥hlin I, Hellsten C, Norén H et al (2001) Cardiotocography only versus cardiotocography plus ST analysis of fetal electrocardiogram for intrapartum fetal monitoring: a Swedish randomised controlled trial. Lancet 358:534–538

    Article  Google Scholar 

  • Baschat AA (2010) Ductus venosus Doppler for fetal surveillance in high-risk pregnancies. Clin Obstet Gynecol 53:858e68

    Article  Google Scholar 

  • Baschat AA (2011) Examination of the fetal cardiovascular system. Semin Fetal Neonatal Med 16:2–12

    Article  Google Scholar 

  • Baschat AA, Harman CR (2006) Venous Doppler in the assessment of fetal cardiovascular status. Curr Opin Obstet Gynecol 18:156–163

    Article  Google Scholar 

  • Baschat AA, Gembruch U, Weiner CP et al (2003) Qualitative venous Doppler waveform analysis improves prediction of critical perinatal outcomes in premature growth-restricted fetuses. Ultrasound Obstet Gynecol 22:240e5

    Google Scholar 

  • Baschat AA, Galan HL, Bhide A et al (2006) Doppler and biophysical assessment in growth restricted fetuses: distribution of test results. Ultrasound Obstet Gynecol 27:41e7

    Article  Google Scholar 

  • Becker R, Vonk R (2010) Doppler sonography of uterine arteries at 20–23 weeks: depth of notch gives information on probability of adverse pregnancy outcome and degree of fetal growth restriction in a low-risk population. Fetal Diagn Ther 27:78–86

    Article  Google Scholar 

  • Belfort MA, Saade GR, Thom E et al (2015) A randomized trial of intrapartum fetal ECG ST-segment analysis. N Engl J Med 373:632–641

    Article  CAS  Google Scholar 

  • Berkley E, Chauhan SP, Abuhamad A (2012) Doppler assessment of the fetus with intrauterine growth restriction. Am J Obstet Gynecol 206:300e8

    Article  Google Scholar 

  • Bloom SL, Spong CY, Thom E et al (2006) Fetal pulse oximetry and cesarean delivery. N Engl J Med 355:2195–2202

    Article  CAS  Google Scholar 

  • Chandraharan E (2014) Fetal scalp blood sampling during labour: is it a useful diagnostic test or a historical test that no longer has a place in modern clinical obstetrics? BJOG 121:1056–1062

    Article  CAS  Google Scholar 

  • Chauhan SP, Taylor M, Shields D et al (2007) Intrauterine growth restriction and oligohydramnios among high-risk patients. Am J Perinatol 24:215–221

    Article  Google Scholar 

  • Cosmi E, Rampon M, Saccardi C et al (2012) Middle cerebral artery peak systolic velocity in the diagnosis of fetomaternal hemorrhage. Int J Gynaecol Obstet 117:128e30

    Article  Google Scholar 

  • Cunningham FG, Gant NF, Leveno KJ et al (2001) Williams obstetrics, 21st edn. McGraw-Hill, New York

    Google Scholar 

  • Dawes GS, Moulden M, Redman CW (1995) Computerized analysis of antepartum fetal heart rate. Am J Obstet Gynecol 173:1353–1354

    Article  CAS  Google Scholar 

  • Dawes GS, Moulden M, Redman CW (1996) Improvements in computerized fetal heart rate analysis antepartum. J Perinat Med 24:25–36

    Article  CAS  Google Scholar 

  • DeVore GR (2015) The importance of the cerebroplacental ratio in the evaluation of fetal well-being in SGA and AGA fetuses. Am J Obstet Gynecol 213:5–15

    Article  Google Scholar 

  • East CE, Brennecke SP, King JF et al (2006) The effect of intrapartum fetal pulse oximetry in the presence of a nonreassuring fetal heart pattern on operative delivery rates: a multicenter randomized controlled trial (the FOREMOST trial). Am J Obstet Gynecol 194:606.e1–606.e16

    Article  Google Scholar 

  • East CE, Begg L, Colditz PB et al (2014) Fetal pulse oximetry for fetal assessment in labour. Cochrane Database Syst Rev 10, CD004075

    Google Scholar 

  • East CE, Leader LR, Sheehan P et al (2015) Intrapartum fetal scalp lactate sampling for fetal assessment in the presence of a non-reassuring fetal heart rate trace. Cochrane Database Syst Rev 5, CD006174

    Google Scholar 

  • Everett TR, Peebles DM (2015) Antenatal tests of fetal wellbeing. Semin Fetal Neonatal Med 20:138–143

    Article  Google Scholar 

  • Ferrazzi E, Bozzo M, Rigano S et al (2002) Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet Gynecol 19:140–146

    Article  CAS  Google Scholar 

  • Figueras F, Savchev S, Triunfo S et al (2015) An integrated model with classification criteria to predict small-for-gestational-age fetuses at risk of adverse perinatal outcome. Ultrasound Obstet Gynecol 45:279–285

    Article  CAS  Google Scholar 

  • Gerber S, Hohlfeld P, Viquerat F et al (2006) Intrauterine growth restriction and absent or reverse end-diastolic blood flow in umbilical artery (Doppler class II or III): a retrospective study of short-and long-term fetal morbidity and mortality. Eur J Obstet Gynecol Reprod Biol 126:20–26

    Article  Google Scholar 

  • Grivell RM, Alfirevic Z, Gyte GM et al (2015) Antenatal cardiotocography for fetal assessment. Cochrane Database Syst Rev 9, CD007863

    Google Scholar 

  • Hebbar S, Rai L, Adiga P et al (2015) Reference ranges of amniotic fluid index in late third trimester of pregnancy: what should the optimal interval between two ultrasound examinations be? J Pregnancy 2015:319204

    Article  Google Scholar 

  • Hutter D, Kingdom J, Jaeggi E (2010) Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int J Pediatr 2010:401323

    Article  Google Scholar 

  • Jørgensen JS, Weber T (2014) Fetal scalp blood sampling in labor – a review. Acta Obstet Gynecol Scand 93:548–555

    Article  Google Scholar 

  • Khalil AA, Morales Rosello J, Morlando M et al (2014) Is fetal cerebroplacental ratio an independent predictor of intrapartum fetal compromise and neonatal unit admission? Am J Obstet Gynecol 213(54):e1–e10

    Google Scholar 

  • Kingdom JCP, Kaufmann P (1997) Oxygen and placental villous development: origins of fetal hypoxia. Placenta 18:613–621

    Article  CAS  Google Scholar 

  • Kingdom J, Huppertz B, Seaward G, Kaufmann P (2000) Development of the placental villous tree and its consequences for fetal growth. Eur J Obstet Gynecol Reprod Biol 92:35–43

    Article  CAS  Google Scholar 

  • Klauser CK, Christensen EE, Chauhan SP et al (2005) Use of fetal pulse oximetry among high-risk women in labor: a randomized control trial. Am J Obstet Gynecol 192:1810–1817

    Article  Google Scholar 

  • Kühnert M, Schmidt S (2004) Intrapartum management of nonreassuring fetal heart rate patterns: a randomized controlled trial of fetal pulse oximetry. Am J Obstet Gynecol 191:1989–1995

    Article  Google Scholar 

  • Lalor JG, Fawole B, Alfirevic Z et al (2008) Biophysical profile for fetal assessment in high risk pregnancies. Cochrane Database Syst Rev 23, CD000038

    Google Scholar 

  • Lalor JG, Fawole B, Alfirevic Z et al (2012) Biophysical profile for fetal assessment in high risk pregnancies. Wiley, Chichester

    Google Scholar 

  • Larma JD, Silva AM, Holcroft CJ et al (2007) Intrapartum electronic fetal heart rate monitoring and the identification of metabolic acidosis and hypoxic-ischemic encephalopathy. Am J Obstet Gynecol 197:301.e1–301.e8

    Article  Google Scholar 

  • Lees C, Marlow N, Arabin B, TRUFFLE Group et al (2013) Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol 42:400–408

    Article  CAS  Google Scholar 

  • Lees CC, Marlow N, van Wassenaer-Leemhuis A, TRUFFLE Study Group et al (2015) Two year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a randomised trial. Lancet 385:2162–2172

    Article  Google Scholar 

  • Leung TY, Lao TT (2012) Timing of caesarean section according to urgency. Best Pract Res Clin Obstet Gynaecol 27:251–267

    Article  Google Scholar 

  • Manning FA (1999) Fetal biophysical profile. Obstet Gynecol Clin North Am 26:557–577

    Article  CAS  Google Scholar 

  • Manning FA (2009) Antepartum fetal testing: a critical appraisal. Curr Opin Obstet Gynecol 21:348–352

    Article  Google Scholar 

  • Mari G (2005) Middle cerebral artery peak systolic velocity: is it the standard of care for the diagnosis of fetal anemia? J Ultrasound Med 24:697–702

    Article  Google Scholar 

  • Mari G, Hanif F, Kruger M et al (2007) Middle cerebral artery peak systolic velocity: a new Doppler parameter in the assessment of growth-restricted fetuses. Ultrasound Obstet Gynecol 29:310–316

    Article  CAS  Google Scholar 

  • Martin CB Jr (2008) Normal fetal physiology and behavior, and adaptive responses in the fetus with hypoxemia. Semin Perinatol 32:239e42

    Google Scholar 

  • Morales-Rosello J, Khalil A, Morlando M et al (2015) Poor neonatal acid-base status in term fetuses with low cerebroplacental ratio. Ultrasound Obstet Gynecol 45:156e61

    Google Scholar 

  • Morris RK, Malin G, Robson SC, Kleijnen J et al (2011) Fetal umbilical artery Doppler to predict compromise of fetal/neonatal wellbeing in a high risk population: systematic review and bivariate meta-analysis. Ultrasound Obstet Gynecol 37:135e42

    Google Scholar 

  • Morris RK, Say R, Robson SC et al (2012) Systematic review and meta-analysis of middle cerebral artery Doppler to predict perinatal wellbeing. Eur J Obstet Gynecol Reprod Biol 165:141e55

    Article  Google Scholar 

  • Morris RK, Meller CH, Tamblyn J et al (2014) Association and prediction of amniotic fluid measurements for adverse pregnancy outcome: systematic review and meta-analysis. BJOG 121:686–699

    Article  CAS  Google Scholar 

  • Neilson JP (2015) Fetal electrocardiogram (ECG) for fetal monitoring during labour. Cochrane Database Syst Rev 21(12), CD000116

    Google Scholar 

  • O’Gorman N, Tampakoudis G, Wright A et al (2016) Uterine artery pulsutility index at 12, 22, 32 and 36 weeks’ gestation in screening for preeclampsia. Ultrasound Obstet Gynecol 47:565–572

    Article  CAS  Google Scholar 

  • Ojala K, Vääräsmäki M, Mäkikallio K et al (2006) A comparison of intrapartum automated fetal electrocardiography and conventional cardiotocography: a randomised controlled study. BJOG 113:419–423

    Article  CAS  Google Scholar 

  • Omo-Aghoja L (2014) Maternal and fetal acid–base chemistry: a major determinant of perinatal outcome. Ann Med Health Sci Res 4:8–17

    Article  CAS  Google Scholar 

  • Ott WJ (2005) Reevaluation of the relationship between amniotic fluid volume and perinatal outcome. Am J Obstet Gynecol 192:1803–1809

    Article  Google Scholar 

  • Pinas A, Chandraharan E (2016) Continuous cardiotocography during labour: analysis, classification and management. Best Pract Res Clin Obstet Gynaecol 30:33–47

    Article  Google Scholar 

  • Pipkin FB (1999) Fetal growth and physiology. In: Edmonds KD (ed) Dewhurst’s textbook of obstetrics and gynecology for postgraduates, 6th edn. Blackwell Science, Oxford, pp 104–112

    Google Scholar 

  • Prior T, Mullins E, Bennett P et al (2013) Prediction of intrapartum fetal compromise using the cerebroumbilical ratio: a prospective observational study. Am J Obstet Gynecol 208:124.e1–124.e6

    Article  Google Scholar 

  • Prior T, Paramasivam G, Bennett P et al (2015) Are fetuses that fail to achieve their growth potential at increased risk of intrapartum compromise? Ultrasound Obstet Gynecol 46:460–464

    Article  CAS  Google Scholar 

  • Pruetz JD, Votava-Smith J, Miller DA (2015) Clinical relevance of fetal hemodynamic monitoring: perinatal implications. Semin Fetal Neonatal Med 20:217–224

    Article  Google Scholar 

  • Regnault TR, de Vrijer B, Galan HL et al (2007) Development and mechanisms of fetal hypoxia in severe fetal growth restriction. Placenta 28:714–723

    Article  CAS  Google Scholar 

  • Savasan ZA, Goncalves LF, Bahado-Singh RO (2014) Second- and third-trimester biochemical and ultrasound markers predictive of ischemic placental disease. Semin Perinatol 38:167–176

    Article  Google Scholar 

  • Severi FM, Rizzo G, Bocchi C et al (2000) Intrauterine growth retardation and fetal cardiac function. Fetal Diagn Ther 15:8–19

    Article  CAS  Google Scholar 

  • Severi FM, Bocchi C, Visentin A et al (2002) Uterine and fetal cerebral Doppler predict the outcome of third-trimester small-for-gestational age fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol 19:225–228

    Article  CAS  Google Scholar 

  • Seyam YS, Al-Mahmeid MS, Al-Tamimi HK (2002) Umbilical artery Doppler flow velocimetry in intrauterine growth restriction and its relation to perinatal outcome. Int J Gynecol Obstet 77:131–137

    Article  CAS  Google Scholar 

  • Soregaroli M, Bonera R, Danti L et al (2002) Prognostic role of umbilical artery Doppler velocimetry in growth-restricted fetuses. J Matern Fetal Neonatal Med 11:199–203

    Article  CAS  Google Scholar 

  • Thompson JL, Kuller JA, Rhee EH (2012) Antenatal surveillance of fetal growth restriction. Obstet Gynecol Surv 67:554e65

    Article  Google Scholar 

  • Thornton JG, Hornbuckle J, Vail A, GRIT Study Group et al (2004) Infant wellbeing at 2 years of age in the Growth Restriction Intervention Trial (GRIT): multicentred randomised controlled trial. Lancet 364:513–520

    Article  CAS  Google Scholar 

  • Turan S, Turan OM, Berg C et al (2007) Computerized fetal heart rate analysis, Doppler ultrasound and biophysical profile score in the prediction of acid-base status of growth-restricted fetuses. Ultrasound Obstet Gynecol 30:750e6

    Google Scholar 

  • Valiño N, Giunta G, Gallo DM et al (2016) Uterine artery pulsatility index at 30–34 weeks’ gestation in the prediction of adverse perinatal outcome. Ultrasound Obstet Gynecol 47:308–315

    Article  Google Scholar 

  • Weiner E, Bar J, Fainstein N et al (2015) Intraoperative findings, placental assessment and neonatal outcome in emergent cesarean deliveries for non-reassuring fetal heart rate. Eur J Obstet Gynecol Reprod Biol 185:103–107

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filiberto Maria Severi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vannuccini, S., Bocchi, C., Severi, F.M., Petraglia, F. (2018). Diagnosis of Fetal Distress. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29489-6_156

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29489-6_156

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29487-2

  • Online ISBN: 978-3-319-29489-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics