Skip to main content

Heterogeneous Rotational and Translational Dynamics in Glasses and Other Disordered Materials Studied by NMR

  • Living reference work entry
  • First Online:
Book cover Modern Magnetic Resonance

Abstract

Disordered materials such as glass formers and amorphous solid electrolytes are characterized by ubiquitous nonexponential molecular and/or ionic dynamics. This chapter focuses mostly on their investigation via two-time stimulated-echo-based correlation functions. Underlying concepts are briefly reviewed and recent experimental examples from 2H, 7Li, 17O, 23Na, and 31P NMR are presented which encompass nonselective and selective central-transition excitation and a variety of relevant spin quantum numbers. Several recent methodological developments render also four-time stimulated-echo techniques applicable to a large array of probe nuclei. The higher-order correlation functions thus accessible enable quantitative insights into the origins of the nonexponentiality of atomic, ionic, or molecular motions. Provided that heterogeneous dynamics prevails, these experiments elucidate the temporal evolution of fast and slow subensembles, in particular by monitoring exchange processes among them. Together with corresponding frequency-domain techniques that are also touched upon, NMR methods to unravel the nature of nonexponentiality in a host of materials have become available for almost any probe nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ngai KL. Relaxation and Diffusion in Complex Systems. Berlin: Springer; 2011.

    Book  Google Scholar 

  2. Böhmer R, Diezemann G, Hinze G, Rössler E. Dynamics of supercooled liquids and glassy solids. Prog. NMR Spectrosc. 2001;39:191.

    Article  Google Scholar 

  3. Bjorkstam JL, Listerud J, Villa M. NMR T1 and line narrowing in superionics – a consistent interpretation. Solid State Ionics. 1986;18–19:117.

    Article  Google Scholar 

  4. Richert R. Origin of Dispersion in Dipolar Relaxations of Glasses. Chem. Phys. Lett. 1993;216:223–7.

    Article  Google Scholar 

  5. Richert R, Israeloff N, Alba-Simionesco C, Ladieu F, L'Hôte D. In: Berthier L, Biroli G, Bouchaud JP, Cipelletti L, van Saarloos W, editors. Dynamical Heterogeneities in Glasses, Colloids, and Granular Media. Oxford: Oxford University Press; 2011. p. 152–202.

    Chapter  Google Scholar 

  6. Ediger MD. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 2000;51:99.

    Article  Google Scholar 

  7. Sillescu H. Heterogeneity at the glass transition: a review. J. Non-Cryst. Solids. 1999;243:81.

    Article  Google Scholar 

  8. Hinze G, Diezemann G, Basché T. Rotational Correlation Functions of Single Molecules. Phys. Rev. Lett. 2004;93:203001.

    Article  Google Scholar 

  9. Kaufman LJ. Heterogeneity in single molecule observables in the study of supercooled liquids. Annu. Rev. Phys. Chem. 2013;64:177.

    Article  Google Scholar 

  10. Schmidt-Rohr K, Spiess HW. Nature of nonexponential loss of correlation above the glass transition investigated by multidimensional NMR. Phys. Rev. Lett. 1991;66:3020.

    Article  Google Scholar 

  11. Heuer A, Wilhelm M, Zimmermann H, Spiess HW. Rate memory of structural relaxation in glasses and its detection by multidimensional NMR. Phys. Rev. Lett. 1995;75:2851.

    Article  Google Scholar 

  12. Böhmer R, Diezemann G, Hinze G, Jeffrey KR, Winterlich M. Heterogeneous dynamics in disordered materials: Viscous liquids, plastic crystals, and glassy ionics. In: Webb GA, editor. Modern Magnetic Resonance, Applications in Materials, Food, and Marine Sciences, vol. 3 Dordrecht: Springer; 2006. p. 1467–71.

    Google Scholar 

  13. Schmidt-Rohr K, Spiess HW. Multidimensional Solid-State NMR and Polymers. London: Academic Press; 1994.

    Google Scholar 

  14. Böhmer R, Diezemann G, Hinze G, Sillescu H. A nuclear magnetic resonance study of higher-order correlation functions in supercooled ortho-terphenyl. J. Chem. Phys. 1998;108:890.

    Article  Google Scholar 

  15. Gullion T, Conradi MS. Anisotropic diffusion in benzene: 13C NMR study. Phys. Rev. B. 1985;32:7076.

    Article  Google Scholar 

  16. Rössler E. Two-Dimensional Exchange NMR Analysed In The Time Domain. Chem. Phys. Lett. 1986;128:330.

    Article  Google Scholar 

  17. Rössler E, Börner K, Tauchert J, Taupitz M, Pöschl M. Reorientational Correlation Functions Of Simple Supercooled Liquids As Revealed By NMR Studies. Ber. Bunsenges. Phys. Chem. 1991;95:1077.

    Article  Google Scholar 

  18. Spiess HW. Deuteron spin alignment: A probe for studying ultraslow motions in solids and solid polymers. J. Chem. Phys. 1980;72:6755.

    Article  Google Scholar 

  19. Jeffrey KR. Nuclear magnetic relaxation in a spin-1 system. Bull. Magn. Reson. 1981;3:69.

    Google Scholar 

  20. Tang XP, Wu Y. Alignment Echo of Spin-3/2 9Be Nuclei: Detection of Ultraslow Motion. J. Magn. Reson. 1998;133:155.

    Article  Google Scholar 

  21. Böhmer R. Multiple-Time Correlation Functions in Spin-3/2 Solid-State NMR Spectroscopy. J. Magn. Reson. 2000;147:78.

    Article  Google Scholar 

  22. Storek M, Böhmer R. Quadrupolar transients, cosine correlation functions, and two-dimensional exchange spectra of non-selectively excited spin-3/2 nuclei: A 7Li NMR study of the superionic conductor lithium indium phosphate. J. Magn. Reson. 2015;260:116; Corrigendum, J. Magn. Reson. 2016;272:60.

    Google Scholar 

  23. Schaefer D, Leisen J, Spiess HW. Experimental Aspects of Multidimensional Exchange Solid-State NMR. J. Magn. Reson. A. 1995;115:60.

    Article  Google Scholar 

  24. Qi F, Diezemann G, Böhm H, Lambert J, Böhmer R. Simple modeling of dipolar coupled 7Li spins and stimulated-echo spectroscopy of single-crystalline β-eucryptite. J. Magn. Reson. 2004;169:225.

    Article  Google Scholar 

  25. Hinze G, Böhmer R, Diezemann G, Sillescu H. Experimental Determination of Four-Time Stimulated Echoes in Liquids, Colloidal Suspensions, and Crystals. J. Magn. Reson. 1998;131:218.

    Article  Google Scholar 

  26. Böhmer R, Storek M, Vogel M. NMR studies of ionic dynamics in solids. In: Hodgkinson P, editor. Modern Methods in Solid-State NMR: A Practitioners’ Guide. London: Royal Society of Chemistry; 2017.

    Google Scholar 

  27. Bowden GD, Hutchison WD, Khachan J. Tensor Operator Formalism for Multiple-Quantum NMR. 2. Spins 3/2, 2, and 5/2 and General I. J. Magn. Reson. 1986;67:415.

    Google Scholar 

  28. Jessat T, Adjei-Acheamfour M, Storek M, Böhmer R. Submillimeter coils for stimulated-echo spectroscopy of a solid sodium ion conductor by nonselective excitation of MHz broad 23Na quadrupolar satellite spectra. State Nucl. Magn. Reson. 2017;82:16.

    Article  Google Scholar 

  29. Adjei-Acheamfour M, Böhmer R. Second-order quadrupole interaction based detection of ultra-slow motions: Tensor operator framework for central-transition spectroscopy and the dynamics in hexagonal ice as an experimental example. J. Magn. Reson. 2014;249:141.

    Article  Google Scholar 

  30. deAzevedo ER, WG H, Bonagamba TJ, Schmidt-Rohr K. Principles of centerband-only detection of exchange in solid-state nuclear magnetic resonance, and extension to centerband-only detection of exchange. J. Chem. Phys. 2000;112:8988.

    Article  Google Scholar 

  31. Kimmich R, Anoardo E. Field-cycling NMR relaxometry. Prog. NMR Spectrosc. 2004;44:257.

    Article  Google Scholar 

  32. Fujara F, Kruk D, Privalov AF. Solid-state Field-Cycling Relaxometry, Instrumental improvements and new application. Prog. NMR Spectrosc. 2014;82:39.

    Article  Google Scholar 

  33. Graf M, Kresse B, Privalov AF, Vogel M. Combining 7Li field-cycling relaxometry and stimulated-echo experiments: A powerful approach to lithium ion dynamics in solid-state electrolytes. Solid State Nucl. Mag. Reson. 2013;51-52:25.

    Article  Google Scholar 

  34. Gabriel J, Petrov OV, Kim Y, Martin SW, Vogel M. Lithium ion dynamics in Li2S + GeS2 + GeO2 glasses studied using 7Li field-cycling relaxometry and line-shape analysis. Solid State Nucl. Mag. Reson. 2015;70:53.

    Article  Google Scholar 

  35. Rössler E, Taupitz M, Börner K, Schulz M, Vieth HM. A simple method analyzing 2H nuclear magnetic resonance line shapes to determine the activation energy distribution of mobile guest molecules in disordered systems. J. Chem. Phys. 1990;92:5847.

    Article  Google Scholar 

  36. Bock D, Kahlau R, Pötzschner B, Wagner E, Rössler EA. Dynamics of asymmetric binary glass formers. II. Results from nuclear magnetic resonance spectroscopy. J. Chem. Phys. 2014;140:094505.

    Article  Google Scholar 

  37. Bock D, Petzold N, Kahlau R, Gradmann S, Schmidtke B, Benoit N, Rössler EA. Dynamic heterogeneities in glass-forming systems. J. Non-Cryst. Solids. 2015;407:88, and references cited therein.

    Google Scholar 

  38. Faske S, Koch B, Murawski S, Küchler R, Böhmer R, Melchior J, Vogel M. Mixed-cation LixAg1–x PO3 glasses studied by 6Li, 7Li, and 109Ag stimulated-echo NMR spectroscopy. Phys. Rev. B. 2011;84:024202, and references cited therein.

    Google Scholar 

  39. Wu G. Solid-State 17O NMR Spectroscopy of Organic and Biological Molecules, G.A. Webb (ed.), Modern Magnetic Resonance, Cham: Springer; 2018. https://doi.org/10.1007/978-3-319-28275-6_70-1

  40. Spiess HW, Garrett BB, Sheline RK, Rabideau SW. Oxygen-17 quadrupole coupling parameters for water in its various phases. J. Chem. Phys. 1969;51:1201.

    Article  Google Scholar 

  41. Geil B, Kirschgen T, Fujara F. Mechanism of proton transport in hexagonal ice. Phys. Rev. B. 2005;72:014304.

    Article  Google Scholar 

  42. Adjei-Acheamfour M, Tilly JF, Beerwerth J, Böhmer R. Water dynamics on ice and hydrate lattices studied by second-order central-line stimulated-echo oxygen-17 nuclear magnetic resonance. J. Chem. Phys. 2015;143:214201.

    Article  Google Scholar 

  43. Yamauchi K, Janssen J, Kentgens A. Implementing solenoid microcoils for wide-line solid-state NMR. J. Magn. Reson. 2004;167:87.

    Article  Google Scholar 

  44. Witschas M, Eckert H. 31P and 23Na Solid-State NMR Studies of Cation Dynamics in HT-Sodium Orthophosphate and the Solid Solutions (Na2SO4)x(Na3PO4)1–x. J. Phys. Chem. A. 1999;103:10764.

    Article  Google Scholar 

  45. Böhmer R. Non-exponential relaxation in disordered materials: Phenomenological correlations and spectrally selective experiments. Phase Trans. 1998;65:211.

    Article  Google Scholar 

  46. Böhmer R, Chamberlin RV, Diezemann G, Geil B, Heuer A, Hinze G, Kuebler SC, Richert R, Schiener B, Sillescu H, Spiess HW, Tracht U, Wilhelm M. Nature of the non-exponential primary relaxation in structural glass-formers probed by dynamically selective experiments. J. Non-Cryst. Solids. 1998;235-237:1.

    Article  Google Scholar 

  47. Tracht U, Heuer A, Spiess HW. Different dynamic filters constructed from multidimensional NMR experiments. J. Non-Cryst. Solids. 1998;235-237:27.

    Article  Google Scholar 

  48. Storek M, Tilly J, Jeffrey KR, Böhmer R. Four-time 7Li stimulated-echo spectroscopy for the study of dynamic heterogeneities: Application to lithium borate glass. J. Magn. Reson. 2017;282:1.

    Article  Google Scholar 

  49. Adjei-Acheamfour M, Storek M, Böhmer R. Communication: Heterogeneous water dynamics on a clathrate hydrate lattice detected by multidimensional oxygen nuclear magnetic resonance. J. Chem. Phys. 2017;146:181101.

    Article  Google Scholar 

  50. Hinze G, Diezemann G, Sillescu H. Four-time rotational correlation functions. Europhys. Lett. 1998;44:565.

    Article  Google Scholar 

  51. Böhmer R, Kremer F. Dielectric spectroscopy and multidimensional NMR - A comparison. In: Kremer F, Schönhals A, editors. Broadband dielectric spectroscopy. Springer: Berlin; 2002. p. 625–84.

    Google Scholar 

  52. Vogel M, Brinkmann C, Eckert H, Heuer A. Origin of nonexponential relaxation in a crystalline ion conductor: a multidimensional 109Ag NMR study. Phys. Rev. B. 2004;69:094302.

    Article  Google Scholar 

  53. Winterlich M, Diezemann G, Zimmermann H, Böhmer R. Microscopic origin of the nonexponential dynamics in a glassy crystal. Phys. Rev. Lett. 2003;91:235504.

    Article  Google Scholar 

  54. Winterlich M, Böhmer R, Diezemann G, Zimmermann H. Rotational motion in the molecular crystals meta- and ortho-carborane studied by deuteron nuclear magnetic resonance. J. Chem. Phys. 2005;123:094504.

    Article  Google Scholar 

  55. Vogel M, Brinkmann C, Heuer A, Eckert H. On the lifetime of dynamical heterogeneities associated with the ionic jump motion in glasses: Results from molecular dynamics simulations and NMR experiments. J. Non-Cryst. Solids. 2006;352:5156.

    Article  Google Scholar 

  56. Brinkmann C, Faske S, Vogel M, Nilges T, Heuer A, Eckert H. Silver ion dynamics in the Ag5Te2Cl-polymorphs revealed by solid state NMR lineshape and two- and three-time correlation spectroscopies. Phys. Chem. Chem. Phys. 2006;8:369.

    Google Scholar 

  57. Vogel M, Torbrügge T. Nonexponential polymer segmental motion in the presence and absence of ions: 2H NMR multitime correlation functions for polymer electrolytes poly(propylene glycol)-LiClO4. J. Chem. Phys. 2007;126:204902.

    Article  Google Scholar 

  58. Schnauss W, Fujara F, Hartmann K, Sillescu H. Nonexponential 2H spin-lattice relaxation as a signature of the glassy state. Chem. Phys. Lett. 1990;166:381.

    Article  Google Scholar 

  59. Leisen J, Schmidt-Rohr K, Spiess HW. Nonexponential relaxation functions above Tg analyzed by multidimensional NMR and novel spin-echo decay techniques. Physica A. 1993;201:79.

    Article  Google Scholar 

  60. Sen S, Stebbins JF. Heterogeneous NO3 Ion Dynamics near the Glass Transition in the Fragile Ionic Glass Former Ca0.4K0.6(NO3)1.4: A 15N NMR Study. Phys. Rev. Lett. 1997;78:3495.

    Article  Google Scholar 

  61. Vogel M, Rössler E. Exchange Processes in Disordered Systems Studied by Solid-State 2D NMR. J. Phys. Chem. A. 1998;102:2102.

    Article  Google Scholar 

  62. Böhmer R, Diezemann G, Geil B, Hinze G, Nowaczyk A, Winterlich M. Correlation of primary and secondary relaxations in a supercooled liquid. Phys. Rev. Lett. 2006;97:135701.

    Article  Google Scholar 

  63. Schildmann S, Nowaczyk A, Geil B, Gainaru C, Böhmer R. Water dynamics on the hydrate lattice of a tetra-butyl ammonium bromide semi-clathrate. J. Chem. Phys. 2009;130:104505.

    Article  Google Scholar 

  64. Brinkmann C, Faske S, Koch B, Vogel M. NMR Multi-Time Correlation Functions of Ion Dynamics in Solids. Z. Phys. Chem. 2010;224:1535.

    Article  Google Scholar 

  65. Adjei-Acheamfour M, Storek M, Beerwerth J, Böhmer R. Two-dimensional second-order quadrupolar exchange powder spectra for nuclei with half-integer spins. Calculations and an experimental example using oxygen NMR. Solid State Nucl. Magn. Reson. 2015;71:96.

    Article  Google Scholar 

  66. Note that on the basis of deuteron NMR investigations the situation is less clear, see Kirschgen TM, Zeidler MD, Geil B, Fujara F. A deuteron NMR study of the tetrahydrofuran clathrate hydrate, Part II: Coupling of rotational and translational dynamics of water, Phys. Chem. Chem. Phys. 2003;5:5247.

    Google Scholar 

  67. Hasiuk T, Jeffrey KR. 6Li NMR in lithium borate glasses. Solid State Nucl. Magn. Reson. 2008;34:228.

    Article  Google Scholar 

  68. Storek M, Jeffrey KR, Böhmer R. Local-field approximation of homonuclear dipolar interactions in 7Li-NMR: Density-matrix calculations and random-walk simulations tested by echo experiments on borate glasses. Solid State Nucl. Magn. Reson. 2014;59-60:8.

    Article  Google Scholar 

  69. Böhmer R, Hinze G, Diezemann G, Geil B, Sillescu H. Dynamic heterogeneity in supercooled ortho-terphenyl studied by multidimensional deuteron NMR. Europhys. Lett. 1996;36:55.

    Article  Google Scholar 

  70. Diezemann G. A free-energy landscape model for primary relaxation in glass-forming liquids: Rotations and dynamic heterogeneities. J. Chem. Phys. 1996;107:10112.

    Article  Google Scholar 

  71. Heuer A. Information content of multitime correlation functions for the interpretation of structural relaxation in glass-forming systems. Phys. Rev. E. 1997;56:730.

    Article  Google Scholar 

  72. Vogel M, Brinkmann C, Eckert H, Heuer A. Silver dynamics in silver iodide/silver phosphate glasses studied by multi-dimensional 109Ag NMR. Phys. Chem. Chem. Phys. 2002;4:3237.

    Article  Google Scholar 

Download references

Acknowledgement

Mischa Adjei-Acheamfour and Ken R. Jeffrey are thanked for fruitful collaborations. Financial support provided by the Deutsche Forschungsgemeinschaft under Grants No. BO1301/10-1, BO1301/13-1, VO905/8-2, and VO905/12-1 is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Böhmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Böhmer, R., Storek, M., Vogel, M. (2017). Heterogeneous Rotational and Translational Dynamics in Glasses and Other Disordered Materials Studied by NMR. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28275-6_136-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28275-6_136-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28275-6

  • Online ISBN: 978-3-319-28275-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics