Skip to main content

Mixture Boiling

  • Reference work entry
  • First Online:
  • 7574 Accesses

Abstract

This chapter provides the engineer and the researcher with correlations and models for the prediction of the critical aspects of the boiling heat transfer of mixtures. This chapter offers a reliable, hands-on resource for solving common problems across pool boiling and flow boiling applications such as miscible mixtures, refrigerant/lubricant mixtures, additives, and refrigerant/nanolubricants. Fundamental heat transfer and thermodynamic principles are succinctly provided to accompany the correlations and models. This chapter was written with the busy engineer in mind by providing simple but accurate prediction methods, and guidance where neither correlations nor models exist.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

a :

surface area (m2)

A c :

cross-sectional flow area inside tube (m2)

A n :

coefficients given in Eq. (26)

A i :

actual inner surface area of tube (m2)

A s :

heat transfer surface area (m)

b :

fourth-degree polynomial in wl, Eq. (27)

B n :

coefficients given in Eq. (26)

Bo:

local boiling number, \( \frac{q^{{\prime\prime} }}{G_r{i}_{fg}} \)

c p :

specific heat (J·kg−1·K−1)

c :

fourth-degree polynomial in wl, Eq. (27) (K)

C :

coefficients given in Eqs. (16) and (32)

D :

tube diameter (m)

D e :

equivalent inner diameter of smooth tube, \( \sqrt{\frac{4{A}_{\mathrm{c}}}{\uppi}} \) (m)

D h :

hydraulic diameter of microfin tube (m)

D np :

nanoparticle diameter (m)

e :

fin height (m)

E :

Reynolds number enhancement factor given in Eq. (13)

F :

exponential constant in Eq. (1)

g :

gravitational acceleration (m·s−2)

G :

total mass velocity (kg·m−2·s−1)

h fg :

latent heat of vaporization (kJ·kg−1)

h i :

ideal mixture heat transfer coefficient (W·m−2 K−1)

h m :

heat transfer coefficient of refrigerant/lubricant mixture (W·m−2 K−1)

h 2 ϕ :

local two-phase heat-transfer coefficient (W·m−2 K−1)

i m :

mass transfer coefficient (m·s−1)

k :

refrigerant thermal conductivity (W·m−2 K−1)

K :

mixture correction factor Eq. (15)

l e :

thickness of excess layer (m)

l a :

thickness of adiabatic/Van der Waals excess layer (m)

L :

tube length (m)

m :

fitting constant in Eq. (32)

\( \dot{m} \) :

mass flow rate (kg·s−1)

M w :

molecular weight (g·mole−1)

n a :

bubble site density (s−1)

Nu:

local Nusselt number based on Dh

N f :

number of fins

N np :

the number of nanoparticles

Nnp/As:

nanoparticle surface density (m−2)

p :

wetted perimeter (m)

P :

local fluid pressure (Pa)

Pr:

liquid refrigerant Prandtl number \( {\left.\frac{c_p\mu }{k}\right|}_{r,l} \)

q :

heat duty (W)

q″ :

local heat flux (W·m−2)

\( {q}_n^{{\prime\prime} } \) :

\( =\frac{q_{\mathrm{PL}}^{{\prime\prime} }}{1\mathrm{W}\cdot {\mathrm{m}}^{-2}} \)

r c :

critical site radius for bubble nucleation (m)

r b :

bubble departure radius (m)

Re:

all-liquid, refrigerant Reynolds number based on Dh = \( \frac{G_r{D}_h}{\mu_{r,l}} \)

s :

spacing between the fins (m)

S :

suppression factor given in Eq. (14)

S p :

perimeter of one fin and channel (m)

t b :

thickness of the fin at its base (m)

t w :

thickness of the tube wall (m)

T :

temperature (K)

T b :

bubble point temperature of mixture (K)

T c :

refrigerant/lubricant critical solution temperature (lower limit) (K)

T d :

dew point temperature of mixture (K)

T e :

temperature at excess layer/bulk fluid interface (K)

T ib :

temperature of the liquid–vapor interface at bottom of tube (K)

T it :

temperature of the liquid–vapor interface at top of tube (K)

T w :

temperature at roughened surface (K)

w :

bulk lubricant mass fraction

x :

mass fraction

x i :

mass fraction or mole fraction of ith component

x m :

mole fraction

x q :

thermodynamic mass quality

z :

axial distance (m)

α:

helix angle between microfin and tube axis

β:

fin-tip angle, radians

γ :

surface free energy (kg·s−2)

Γ :

excess surface density (kg·m−2)

ΔTs:

wall superheat: TwTs (K)

ΔTle:

temperature drop across excess layer (K)

ζ :

fraction of excess layer removed per bubble

θ :

dimensionless thermal boundary layer temperature profile

Θ :

bubble contact angle, rad

λ :

thermal boundary constant

μ :

dynamic viscosity (kg·m−1·s−1)

ν :

kinematic viscosity (m2·s−1)

ρ :

mass density of liquid (kg·m)−3

σ :

liquid–vapor surface tension (kg·s−2)

ρ :

density (kg·m−3)

ϕ :

nanoparticle volume fraction

χ tt :

Lockhart–Martinelli parameter ((1 − xq)/xq)0.9(ρv/ρl)0.5(μl/μv)0.1

Ψ :

sphericity

1:

system 1

2:

system 2

A :

additive

b :

bulk condition, fin base

c :

critical condition

f :

water

G :

surface geometry dependent

i :

inner

l :

liquid, local

L :

pure lubricant without nanoparticles

LV:

least volatile component

m :

mixture

mb:

mixture boiling

MV:

more volatile component

nL:

nanolubricant

np:

refrigerant/nanolubricant

p :

plain or smooth tube, predicted

pL:

refrigerant/nanolubricant

r :

refrigerant

s :

saturated state

v :

vapor

w :

heat transfer surface

References

  • Adamson AW, Gast AP (1997) Physical chemistry of surfaces, 6th edn. Interscience Publishers, New York, p. 11

    Google Scholar 

  • Barber J, Brutin D, Tadris L (2011) A review on boiling heat transfer enhancement with nanofluids. Nanoscale Res Lett 6:280

    Article  Google Scholar 

  • Bigi AAM, Cremaschi L (2016) A comparison between recent experimental results and existing correlations for microfin tubes for refrigerant and nanolubricants mixtures two phase flow boiling. 16th international refrigeration and air conditioning conference, Purdue, 11–14 July, paper 2340

    Google Scholar 

  • Bigi AMA, Wong T, Deokar P, Cremaschi L (2015) Experimental investigation on heat transfer and thermophysical properties of mixtures of Al2O3 nanolubricants and refrigerant R410A. 2015 ASHRAE Transactions, ASHRAE conference paper no. 15714, ASHRAE Winter Conference, Chicago, IL, 24–28 Jan

    Google Scholar 

  • Brown JS (2013) Fourth ASHRAE/NIST refrigerants Conference: “moving towards sustainability”. HVAC&R Research 19(2):101–102

    Google Scholar 

  • Chaddock JB, Mathur AP (1980) Heat transfer to oil-refrigerant mixtures evaporating in tubes. 2nd multiphase flow and heat transfer symposium, Clean Energy Research Institute, University of Miami, April 1979; published in Multiphase transport: fundamentals, reactor safety, applications, Hemisphere, Washington, pp. 861–884

    Google Scholar 

  • Chen JC (1966) Correlation for boiling heat transfer to saturated fluids in convective flow. I&EC Process Design and Development 5(3):322–329

    Article  Google Scholar 

  • Choi JY, Kedzierski MA, Domanski PA (2001) Generalized pressure drop correlation for evaporation and condensation in smooth and micro-fin tubes, IIF-IIR Commission B1, Paderborn, pp. B4.9–B4.16

    Google Scholar 

  • Clift R, Grace JR, Weber ME (1979) Bubbles, drops, and particles. Academic Press, NY, p. 20

    Google Scholar 

  • Cooper MG (1984) Saturation nucleate pool boiling- a simple correlation. Department of Engineering Science, Oxford University, England 86:785–793

    Google Scholar 

  • Cremaschi L, Hwang Y, Radermacher R (2005) Experimental investigation of oil retention in air conditioning systems. Int J Refrig 28(7):1018–1028

    Article  Google Scholar 

  • Cremaschi L, Wong T, Bigi AAM (2014) Thermodynamic and heat transfer proprieties of Al2O3 nanolubricants. 15th international refrigeration and air conditioning conference at Purdue, paper no 2463, 14–17 July, West Lafayette, IN. Available online at: http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2499&context=iracc

  • Cremaschi L, Bigi AAM, Wong T, Deokar P (2015) Thermodynamic properties of Al2O3 nanolubricants: part 1, effects on the two phase pressure drop. Sci Technol Built Environ, 21: 607–620, https://doi.org/10.1080/23744731.2015.1023165 (online), ISSN: 2374-4731 print / 2374-474X online

    Article  Google Scholar 

  • Cremaschi L, Molinaroli L, Andres C (2016) Experimental analysis and modeling of lubricant effects in microchannel evaporators working with low global warming potential refrigerants. Sci Technol Built Environ 22: 1–14, https://doi.org/10.1080/23744731.2016.118865, ISSN: 2374-4731 print / 2374-474X online

    Article  Google Scholar 

  • Deokar P, Cremaschi L, Wong T, Criscuolo G (2016) Effect of nanoparticles aspect ratio on the two phase flow boiling heat transfer coefficient and pressure drop of refrigerant and nanolubricants mixtures in a 9.5 mm micro-fin tube. Proceedings of the 16th international refrigeration and air conditioning conference at Purdue University, West Lafayette, IN, 11–14 July, paper no. 2098, pp. 1–10

    Google Scholar 

  • Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundamen 1(3):187–191

    Article  Google Scholar 

  • Hamilton LJ, Kedzierski MA, Kaul MP (2008) Horizontal convective boiling of pure and mixed refrigerants within a micro-fin tube. J Heat Transf 15(3):211–226

    Article  Google Scholar 

  • Incropera FP, DeWitt DP (2002) Fundamentals of heat and mass transfer, 5th edn. John Wiley & Sons, New York

    Google Scholar 

  • Jung DS, McLinden M, Radermacher R (1989) Measurement techniques for horizontal flow boiling heat transfer with pure and mixed refrigerants. Exp Heat Transf 2:237–255

    Article  Google Scholar 

  • Kedzierski MA (2001) The effect of lubricant concentration, miscibility and viscosity on R134a pool boiling. Int J Refrig 24(4):348–366

    Article  Google Scholar 

  • Kedzierski MA (2002) Use of fluorescence to measure the lubricant excess surface density during pool boiling. Int J Refrig 25:1110–1122

    Article  Google Scholar 

  • Kedzierski MA (2003a) A semi-theoretical model for predicting R123/lubricant mixture pool boiling heat transfer. Int J Refrig 26:337–348

    Article  Google Scholar 

  • Kedzierski MA (2003b) Improved thermal boundary layer parameter for semi-theoretical refrigerant/lubricant pool boiling model. Proceedings of international congress of refrigeration, ICR0504, Washington, DC

    Google Scholar 

  • Kedzierski MA (2007) Effect of refrigerant oil additive on R134a and R123 boiling heat transfer performance. Int J Refrig 30:144–154

    Article  Google Scholar 

  • Kedzierski MA (2011) Effect of Al2O3 Nanolubricant on R134a pool boiling heat transfer. Int J Refrig 34(2):498–508

    Article  Google Scholar 

  • Kedzierski MA (2012) R134a/AlO Nanolubricant mixture pool boiling on a rectangular finned surface. ASME J Heat Transf 134:121501

    Article  Google Scholar 

  • Kedzierski MA (2013) Viscosity and density of aluminum oxide nanolubricant. Int J Refrig 36(4):1333–1340

    Article  Google Scholar 

  • Kedzierski MA (2015) Effect of concentration on R134a/Al2O3 Nanolubricant mixture boiling on a reentrant cavity surface. Int J Refrig 49:36–38

    Article  Google Scholar 

  • Kedzierski MA, Goncalves JM (1999) Horizontal convective condensation of alternative refrigerants within a micro-fin tube. J Heat Transf 6(2–4):161–178

    Article  Google Scholar 

  • Kedzierski MA, Gong M (2009) Effect of CuO Nanolubricant on R134a pool boiling heat transfer. Int J Refrig 25:1110–1122

    Article  Google Scholar 

  • Kedzierski MA, Kang DY (2016) Horizontal convective boiling of R448A, R449A, and R452B within a micro-fin tube. Sci TechnolBuilt Environ 22(8):1090–1103. https://doi.org/10.1080/23744731.2016.1186460

    Article  Google Scholar 

  • Kedzierski MA, Kim JH, Didion DA (1992) In: Kim JH, Nelson RA, Hashemi A (eds) Causes of the apparent heat transfer degradation for refrigerant mixtures, two-phase flow and heat transfer, vol 197. HTD, ASME, New York, pp. 149–158

    Google Scholar 

  • Kedzierski MA, Brignoli R, Quine K, Brown JS (2016) Viscosity, density, and thermal conductivity of aluminum oxide and zinc oxide Nanolubricants. Int J Refrig 74:3–11. https://doi.org/10.1016/j.ijrefrig.2016.10.003

    Article  Google Scholar 

  • Laesecke A (2002) Private communications. NIST, Boulder

    Google Scholar 

  • Lemmon EW, Huber ML, McLinden MO (2013) NIST Standard Reference Database 23, Version 9.1. Private Communications with McLinden, National Institute of Standards and Technology, Boulder

    Google Scholar 

  • Maxwell JC (1954) A treatise on electricity and magnetism, vol 1, 3rd edn. Dover, New York, p. 440

    Google Scholar 

  • Mikic BB, Rohsenow WM (1969) A new correlation of pool boiling data including the effect of heating surface characteristics. J Heat Transf 83:245–250

    Article  Google Scholar 

  • Radermacher R, Cremaschi L, Schwentker RA (2006) Modeling of oil retention in the suction line and evaporator of air conditioning systems. HVAC & R Research Journal 12(1):35–56

    Article  Google Scholar 

  • Reid RC, Prausnitz JM, Sherwood TK (1977) The properties of gases and liquids, 3rd edn. McGraw-Hill, New York, p. 460

    Google Scholar 

  • Rosen MJ (1978) Surfactants and interfacial phenomena. John Wiley & Sons, New York, p. 57

    Google Scholar 

  • Sawant NN, Kedzierski MA, Brown JS (2007) Effect of lubricant on R410A horizontal flow boiling. NISTIR 7456. U.S. Department of Commerce, Washington, D.C.

    Book  Google Scholar 

  • Schluender EU (1983) Heat transfer in nucleate boiling of mixtures. Int Chem Eng 23(4):589–599

    Google Scholar 

  • Shock RAW (1982) Boiling in multicomponent fluids. In: Multiphase Science and Technology, vol 1. Hemisphere Publishing Corporation, New York, pp. 281–386

    Google Scholar 

  • Thome JR (1989) Prediction of the mixture effect on boiling in vertical thermosiphon reboilers. Heat Transf Eng 12(2):29–38

    Article  Google Scholar 

  • Thome JR (1990) Enhanced boiling heat transfer. Hemisphere Publishing Corporation, Washington, D.C.

    Google Scholar 

  • Thome JR (1995) Comprehensive thermodynamic approach to modeling refrigerant-lubricating oil mixtures. Int J HVAC&R Res 1(2):110–126

    Article  Google Scholar 

  • Thome JR (1999) Flow boiling inside microfin tubes: recent results and design methods. In: Kakac S et al (eds) Heat transfer enhancement of heat exchangers, Series E: applied sciences, vol 355. Kluwer Academic Publishers, Dordrecht, pp. 467–486

    Chapter  Google Scholar 

  • Tipler PL (1978) Modern physics. Worth Pub, New York, p. 320

    Google Scholar 

  • Wasekar VM, Manglik RM (1999) A review of enhanced heat transfer in nucleate pool boiling of aqueous surfactant and polymeric solutions. J Enhanced Heat Transf 6:135–150

    Article  Google Scholar 

  • Wen DS, Wang BX (2002) Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions. Int J Heat Mass Transf 45:1739–1747

    Article  Google Scholar 

  • Zou X, Gong MQ, Chen GF, Sun ZH, Zhang Y, Wu JF (2010) Experimental study on saturated flow boiling heat transfer of R170/R290 mixtures in a horizontal tube. Int J Refrig 33(2):371–380

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Kedzierski .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kedzierski, M.A. (2018). Mixture Boiling. In: Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-26695-4_44

Download citation

Publish with us

Policies and ethics