Skip to main content

Galactic Winds and the Role Played by Massive Stars

  • Reference work entry
  • First Online:
Handbook of Supernovae

Abstract

Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andrews B, Martini P (2013) The mass-metallicity relation with the direct method on stacked spectra of SDSS Galaxies. ApJ 765:140

    Article  ADS  Google Scholar 

  • Andrews BH, Thompson TA (2011) Assessing radiation pressure as a feedback mechanism in star-forming galaxies. ApJ 727:97

    Article  ADS  Google Scholar 

  • Banda-Barragán WE, Parkin ER, Federrath C, Crocker RM, Bicknell GV (2016) Filament formation in wind-cloud interactions – I. Spherical clouds in uniform magnetic fields. MNRAS 455:1309

    Google Scholar 

  • Beirão P, Armus L, Lehnert M, Guillard P, Heckman, T, Draine B et al (2015) Spatially resolved Spitzer-IRS spectral maps of the superwind in M 82. MNRAS 451:2640

    Article  ADS  Google Scholar 

  • Boulares A, Cox DP (1990) Galactic hydrostatic equilibrium with magnetic tension and cosmic-ray diffusion. ApJ 365:544

    Article  ADS  Google Scholar 

  • Breitschwerdt D, McKenzie JF, Voelk HJ (1991) Galactic winds. I – cosmic ray and wave-driven winds from the Galaxy. A&A 245:79

    Google Scholar 

  • Brüggen M, Scannapieco E (2016) The Launching of Cold Clouds by Galaxy Outflows. II. The Role of Thermal Conduction. ApJ 882:31

    Google Scholar 

  • Chevalier R, Clegg A (1985) Wind from a starburst galaxy nucleus. Nature 317:44

    Article  ADS  Google Scholar 

  • Chisholm J, Tremonti C, Leitherer C, Chen Y, Wofford A, Lundgren B (2015) Scaling relations between warm galactic outflows and their host galaxies. ApJ 811:149

    Article  ADS  Google Scholar 

  • Contursi A, Poglitsch A, Gracia Carpio J, Veilleux S, Sturm E, Fischer J et al (2013) Spectroscopic FIR mapping of the disk and galactic wind of M 82 with Herschel-PACS. A&A 549:118

    Article  Google Scholar 

  • Cooper JL, Bicknell GV, Sutherland RS, Bland-Hawthorn J (2008) Three-dimensional simulations of a starburst-driven galactic wind. ApJ 674:157–171

    Article  ADS  Google Scholar 

  • Cooper JL, Bicknell GV, Sutherland RS, Bland-Hawthorn J (2009) Starburst-driven galactic winds: filament formation and emission processes. ApJ 703:330

    Article  ADS  Google Scholar 

  • Creasy P, Theuns T, Bower R (2013) How supernova explosions power galactic winds. MNRAS 429:1922

    Article  ADS  Google Scholar 

  • Davis S, Jiang Y-F, Stone J, Murray N (2014) Radiation Feedback in ULIRGs: Are Photons Movers and Shakers? ApJ 796:107

    Article  ADS  Google Scholar 

  • Everett JE, Zweibel EG, Benjamin RA, McCammon D, Rocks L, Gallagher J (2008) The Milky Way’s Kiloparsec-Scale Wind: A Hybrid Cosmic-Ray and Thermally Driven Outflow. ApJ 674:258

    Article  ADS  Google Scholar 

  • Girichidis P, Naab T, Walch S, Hanasz M, Mac Low M-M, Ostriker J et al (2016) Launching cosmic-ray-driven outflows from the magnetized interstellar medium. ApJ 816:L19

    Article  ADS  Google Scholar 

  • Grimes J, Heckman T, Aloisi A, Calzetti D, Leitherer C, Martin CL et al (2009) Observations of starburst galaxies with Far-Ultraviolet Spectrographic Explorer: Galactic feedback in the local universe. ApJS 181:272

    Article  ADS  Google Scholar 

  • Heckman T, Borthakur S (2016) The implications of extreme outflows from extreme Starbursts. ApJ 822:9

    Article  ADS  Google Scholar 

  • Heckman T, Armus L, Miley G (1990) On the nature and implications of starburst-driven galactic superwinds. ApJS 74:833

    Article  ADS  Google Scholar 

  • Heckman T, Lehnert M, Strickland D, Armus L (2000) Absorption-line probes of gas and dust in galactic superwinds. ApJS 129:493

    Article  ADS  Google Scholar 

  • Heckman T, Alexandrof R, Borthakur S, Overzier R, Leitherer C (2015) The systematic properties of the warm phase of starburst-driven galactic winds. ApJ 809:147 (H15)

    Article  ADS  Google Scholar 

  • Hoopes C, Heckman T, Strickland D, Seibert M, Madore B, Rich RM et al (2005) GALEX Observations of the Ultraviolet Halos of NGC 253 and M 82. ApJ 619:L99

    Article  ADS  Google Scholar 

  • Hopkins PF, Quataert E, Murray N (2012) Stellar feedback in galaxies and the origin of galaxy-scale winds. MNRAS 421:3522

    Article  ADS  Google Scholar 

  • Ipavich FM (1975) Galactic winds driven by cosmic rays. ApJ 196:107

    Article  ADS  Google Scholar 

  • Johnson H, Axford W (1971) Galactic Winds. ApJ 165:381

    Article  ADS  Google Scholar 

  • Jubelgas M, Springel V, Enßlin T, Pfrommer C (2008) Cosmic ray feedback in hydrodynamical simulations of galaxy formation. A&A 481:33

    Article  ADS  Google Scholar 

  • Krumholz MR, Thompson TA (2013) Numerical simulations of radiatively driven dusty winds. MNRAS 434:2329

    Article  ADS  Google Scholar 

  • Lehnert M, Heckman T (1996) Ionized gas in the kalos of edge-on starburst galaxies: evidence for supernova-driven superwinds. ApJ 462:651

    Article  ADS  Google Scholar 

  • Lehnert M, Heckman T, Weaver K (1999) Very extended X-ray and Hα emission in M 82: implications for the superwind phenomenon. ApJ 523:575

    Article  ADS  Google Scholar 

  • Leroy A, Walter F, Martini P, Roussel H, Sandstrom K, Ott J et al (2015) The multi-phase cold fountain in M 82 revealed by a wide, sensitive map of the molecular interstellar medium. ApJ 814:83

    Article  ADS  Google Scholar 

  • Lopez LA, Krumholz MR, Bolatto AD, Prochaska JX, Ramirez-Ruiz E (2011) What drives the expansion of giant H II Regions? A study of stellar feedback in 30 Doradus. ApJ 731:91

    Article  ADS  Google Scholar 

  • Lynds CR, Sandage A (1963) Evidence for an explosion in the center of the galaxy M 82. ApJ 137:1005

    Article  ADS  Google Scholar 

  • Marlowe A, Heckman T, Wyse R, Schommer R (1995) Observations of the impact of starbursts on the interstellar medium in dwarf galaxies. ApJ 438:563

    Article  ADS  Google Scholar 

  • Martin CL (1998) The Impact of Star Formation on the Interstellar Medium of Dwarf Galaxies II: The Formation of Galactic Winds. ApJ 506:222

    Article  ADS  Google Scholar 

  • Martin CL (2005) Mapping large-scale gaseous outflows in ultraluminous galaxies with Keck II ESI spectra: variations in outflow velocity with galactic mass. ApJ 621:227

    Article  ADS  Google Scholar 

  • Martin CL, Shapley A, Coil A, Kornei K, Bundy K, Weiner B et al (2012) Demographics and physical properties of gas outflows/inflows at 0.4 ¡ z ¡ 1.4. ApJ 760:127

    Google Scholar 

  • Mathews W, Baker J (1971) Galctic Winds. ApJ 170:241

    Article  ADS  Google Scholar 

  • McCourt M, O’Leary RM, Madigan A-M, Quataert E (2015) Magnetized Gas Clouds Can Survive Acceleration by a Hot Wind. MNRAS 449:2

    Article  ADS  Google Scholar 

  • McGaugh S, Schombert J, de Blok W, Zagursky MJ (2010) The Baryon Content of Cosmic Structures. ApJ 708:L14

    Article  ADS  Google Scholar 

  • M\(\acute{e}\) nard B, Scranton R, Fukagita M, Richards G (2010) Measuring the galaxy-mass and galaxy-dust correlations through magnification and reddening. MNRAS 405:1025

    Google Scholar 

  • Murray N, Quataert E, Thompson TA (2005) On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds. ApJ 618:569

    Article  ADS  Google Scholar 

  • Murray N, Martin CL, Quataert E, Thompson TA (2007) The Ionization State of Sodium in Galactic Winds. ApJ 660:211

    Article  ADS  Google Scholar 

  • Murray N, Quataert E, Thompson TA (2010) The Disruption of Giant Molecular Clouds by Radiation Pressure & the Efficiency of Star Formation in Galaxies. ApJ 709:191

    Article  ADS  Google Scholar 

  • Murray N, Ménard B, Thompson TA (2011) Radiation pressure from massive star clusters as a launching mechanism for super-galactic winds. ApJ 735:66

    Article  ADS  Google Scholar 

  • Pellegrini EW, Baldwin JA, Ferland GJ (2011) Structure and feedback in 30 Doradus. II. Structure and chemical abundances. ApJ 738:34

    Google Scholar 

  • Prochaska JX, Kasen D, Rubin K (2011) Simple models of metal-line absorption and emission from cool gas outflows. ApJ 734:24

    Article  ADS  Google Scholar 

  • Rupke D, Veilleux S, Sanders D (2005) Outflows in Infrared-Luminous Starbursts at z < 0.5. II. Analysis and Discussion. ApJS 160:115

    Google Scholar 

  • Scannapieco E, Brüggen M (2015) The launching of cold clouds by galaxy outflows. I. Hydrodynamic interactions with radiative cooling. ApJ 805:158

    Google Scholar 

  • Scarlata C, Panagia N (2015) A semi-analytical line transfer model to interpret the spectra of galaxy outflows. ApJ 801:43

    Article  ADS  Google Scholar 

  • Scarrott S, Eaton A, Axon D (1991) The scattered H-alpha emission-line filaments in M 82. MNRAS 252:12

    Article  ADS  Google Scholar 

  • Seaquist E, Odegard N (1991) A nonthermal radio halo surrounding M 82. ApJ 369:320

    Article  ADS  Google Scholar 

  • Shopbell P, Bland-Hawthorn J (1998) The Asymmetric Wind in M 82. ApJ 493:129

    Article  ADS  Google Scholar 

  • Silich S, Tenorio-Tagle G, Muñoz-Tuñón C (2003) On the Rapidly Cooling Interior of Supergalactic Winds. ApJ 590:791

    Article  ADS  Google Scholar 

  • Silich S, Tenorio-Tagle G, Rodríguez-González A (2004) Winds Driven by Super Star Clusters: The Self-Consistent Radiative Solution. ApJ 610:226

    Article  ADS  Google Scholar 

  • Socrates A, Davis SW, Ramirez-Ruiz E (2008) The Eddington Limit in Cosmic Rays: An Explanation for the Observed Faintness of Starbursting Galaxies. ApJ 687:202

    Article  ADS  Google Scholar 

  • Somerville R, Davé R (2015) Physical models of galaxy formation in a cosmological framework. ARA&A 53:51

    Article  ADS  Google Scholar 

  • Steidel C, Erb D, Shapley A, Pettini M, Reddy N, Bogosavljevic M, Rudie GC, Rakic O (2010) The Structure and Kinematics of the Circumgalactic Medium from Far-ultraviolet Spectra of z ≃ 2 – 3 Galaxies. ApJ 717:289

    Article  ADS  Google Scholar 

  • Strickland D, Heckman T (2009) Supernova feedback efficiency and mass loading in the starburst and galactic superwind exemplar M 82. ApJ 697:2030

    Article  ADS  Google Scholar 

  • Strickland D, Stevens I (2000) Starburst-driven galactic winds – I. Energetics and intrinsic X-ray emission. MNRAS 314:511

    Google Scholar 

  • Strickland D, Heckman T, Colbert E, Hoopes CG, Weaver KA (2004) A high spatial resolution X-ray and Hα study of hot gas in the halos of star-forming disk galaxies. II. Quantifying supernova feedback. ApJ 606:829

    Google Scholar 

  • Thompson TA, Krumholz MR (2016) Sub-Eddington star-forming regions are super-Eddington: momentum-driven outflows from supersonic turbulence. MNRAS 455:334

    Article  ADS  Google Scholar 

  • Thompson TA, Quataert E, Murray N (2005) Radiation Pressure-supported Starburst Disks and Active Galactic Nucleus Fueling. ApJ 630:167

    Article  ADS  Google Scholar 

  • Thompson TA, Fabian AC, Quataert E, Murray N (2015) Dynamics of dusty radiation-pressure-driven shells and clouds: fast outflows from galaxies, star clusters, massive stars, and AGN. MNRAS 449:147

    Article  ADS  Google Scholar 

  • Thompson TA, Quataert E, Zhang D, Weinberg DH (2016) An origin for multiphase gas in galactic winds and haloes. MNRAS 455:1830

    Article  ADS  Google Scholar 

  • Tremonti C, Heckman T, Kauffmann G, Brinchmann J, Charlot S, White SDM et al (2004) The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey. ApJ 613:898

    Article  ADS  Google Scholar 

  • Veilleux S, Cecil G, Bland-Hathorn J (2005) Galactic winds. ARA&A 43:769

    Article  ADS  Google Scholar 

  • Veilleux S, Rupke D, Swaters R (2009) Warm molecular hydrogen in the galactic wind of M 82. ApJL 700:L149

    Article  ADS  Google Scholar 

  • Wang (1995) Cooling Gas Outflows from Galaxies. ApJ 444:590

    Google Scholar 

  • Yoshida M, Kawabata K, Ohyama Y (2011) Spectropolarimetry of the superwind filaments of the starburst galaxy M 82: kinematics of dust outflow. PASJ 63:493

    Article  ADS  Google Scholar 

  • Zhang D, Thompson TA (2012) Radiation pressure-driven galactic winds from self-gravitating discs. MNRAS 424:1170

    Article  ADS  Google Scholar 

  • Zhang D, Thompson TA, Murray N, Quataert E (2014) Hot galactic winds constrained by the X-ray luminosities of galaxies. ApJ 784:93

    Article  ADS  Google Scholar 

  • Zhang D, Thompson TA, Murray N, Quataert E (2015) Entrainment in Trouble: Cool Cloud Acceleration and Destruction in Hot Supernova-Driven Galactic Winds. arXiv:1507.01951

    Google Scholar 

Download references

Acknowledgements

TMH acknowledges support from NASA Grant NNX 15AE52G and HST GO 12603. TMH thanks Rachel Alexandroff, Lee Armus, Pedro Beirao, Sanch Borthakur, John Grimes, Charles Hoopes, Kip Kuntz, Matt Lehnert, Amanda Marlowe, David Strickland, Anatoly Suchkov, and Christy Tremonti for their collaboration in the investigation of galactic winds as described in this review. TAT is supported by NSF Grant #1516967. TAT thanks Eliot Quataert, Norm Murray, Ondrej Pejcha, Brian Lacki, and Dong Zhang for discussions and collaboration on galactic winds and related topics. TMH and TAT thank the Simons Foundation and organizers Juna Kollmeier and Andrew Benson for hosting the symposium Galactic Winds: Beyond Phenomenology, were part of this work was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Heckman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Heckman, T.M., Thompson, T.A. (2017). Galactic Winds and the Role Played by Massive Stars. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_23

Download citation

Publish with us

Policies and ethics