Skip to main content

Deep Seismic Reflection and Refraction Profiling

  • Living reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Deep Seismic Reflection and Refraction Profiling

Classically, multichannel recording, along a measurement line, of (mostly) seismic P-waves, artificially generated using large energy sources, after these have traveled deep thru the earth’s crust (and upper mantle). Later developments include multicomponent recording enabling analysis of shear waves. Deep reflection profiling is mostly done using vibrators (on land) or air guns (in water) at near-vertical distances (8–12 km) to image the structure of the crust and upper mantle. Wide-angle reflection/refraction profiling uses large explosions and recording distances (200–300 km), primarily to obtain velocity information down to the upper mantle.

Synonyms

Active source seismology ; Controlled source seismology; Deep seismic sounding; Explosion seismology; Wide-angle reflection/refraction profiling

Notational Notes

Below, all capitals (e.g., DSRRP) will be used for acronyms and italicized phrases within double quotes (e.g., “Sei...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aki K, Richards PG (2002) Quantitative seismology, 2nd edn. University Science Books, Mill Valley, USA

    Google Scholar 

  • ANCORP Working Group (2003) Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP‘96)). J Geophys Res 108(B7):2328

    Google Scholar 

  • BABEL Working Group (1990) Evidence for early Proterozoic plate tectonics from seismic reflection profiles in the Baltic shield. Nature 348:34–38

    Article  Google Scholar 

  • BABEL Working Group (1993) Deep seismic reflection/refraction interpretation of critical structure along BABEL profiles A and B in the southern Baltic Sea. Geophys J Int 112:325–343

    Article  Google Scholar 

  • Barazangi M, Brown L (eds) (1986a) Reflection seismology: a global perspective. Geodynamic series, vol 13. American Geophysical Union, Washington, DC

    Google Scholar 

  • Barazangi M, Brown L (eds) (1986b) Reflection seismology: the continental crust. Geodynamic series, vol 14. American Geophysical Union, Washington, DC

    Google Scholar 

  • Behm M, Cheng F, Patterson A, Soreghan G (2019) Passive processing of active nodal seismic data: estimation of Vp/Vs ratios to characterize structure and hydrology of an alpine valley infill. Solid Earth 10:1337–1354

    Article  Google Scholar 

  • Benz HM, Huger JD, Leith WS, Mooney WD, Solodilov LN, Egorkin AV, Ryaboy VS (1992) Deep seismic sounding in Northern Eurasia. EOS Trans Am Geophys Union 73:297–300

    Article  Google Scholar 

  • Berckhemer H (1969) Direct evidence for the composition of the lower crust and the Moho. Tectonophysics 8:97–105

    Article  Google Scholar 

  • Brewer JA, Matthews DH, Warner MR, Hall J, Smythe DK, Whittington RJ (1983) BIRPS deep seismic reflection studies of the British Caledonides. Nature 305:206–210

    Article  Google Scholar 

  • Brewer JA, Smythe DK (1984) MOIST and the continuity of crustal reflector geometry along the Caledonian-Appalachian orogen. J Geol Soc Lond 141:105–120

    Article  Google Scholar 

  • Brittan J, Jones I (2019) FWI evolution – from a monolith to a toolkit. Lead Edge 38:179–184

    Article  Google Scholar 

  • Calvert AJ, Sawyer EW, Davis WJ, Ludden JN (1995) Archaean subduction inferred from seismic images of a mantle suture in the Superior Province. Nature 375:670–674

    Article  Google Scholar 

  • Carbonell R, Gallart J, Tome M (eds) (2000) Deep seismic profiling of the continents and their margins, Tectonophysics 329

    Google Scholar 

  • Carbonell R, Sallares V, Ranero CR, Booth-Rea G (eds) (2016) Special issue on deep seismix, Tectonophysics 689

    Google Scholar 

  • Carpentier SFA, Roy Chowdhury K (2007) Underestimation of scale lengths in stochastic fields and their seismic response: a quantification exercise. Geophys J Int 169:547–562

    Article  Google Scholar 

  • Carpentier SFA, Roy Chowdhury K, Hurich CA (2011) Mapping correlation lengths of lower crustal heterogeneities together with their maximum-likelihood uncertainties. Tectonophysics 508(1–4): 117–130. https://doi.org/10.1016/j.tecto.2010.07.008

    Article  Google Scholar 

  • Chadwick RA, Pharaoh TC (1998) The seismic reflection Moho beneath the United Kingdom and adjacent areas. Tectonophysics 299:255–279

    Article  Google Scholar 

  • Clowes RM, Green AG (eds) (1994) Seismic reflection probing of the continents and their margins, Tectonophysics 232

    Google Scholar 

  • Clowes RM, Ellis RM, Hajnal Z, Jones IF (1983) Seismic reflections from subducting lithosphere? Nature 03:668–670

    Article  Google Scholar 

  • Cook FA, Vasudevan K (2006) Reprocessing and enhanced interpretation of the initial COCORP Southern Appalachian traverse. Tectonophysics 420:161–174

    Article  Google Scholar 

  • Curtis A, Gerstoft P, Sato H, Snieder R, Wapenaar K (2006) Seismic interferometry – turning noise into signal. The Leading Edge 25(9): 1082–1092

    Article  Google Scholar 

  • Davey FJ, Jones L (eds) (2004) Special issue – Continental lithosphere, Tectonophysics 388

    Google Scholar 

  • DEKORP. German continental seismic reflection program. https://www.gfz-potsdam.de/en/section/near-surface-geophysics/projects/past-projects/dekorp-german-continental-reflection-seismic-program

  • Diaconescu CA, Knapp JH, Brown LD, Steer DN, Stiller M (1998) Precambrian Moho offset and tectonic stability of the East European platform from the URSEIS deep seismic profile. Geology 26: 211–214

    Article  Google Scholar 

  • Dohr G (1957) Ein Beitrag der Reflexionsseismiek zur Erforschung des tieferen Untergrundes. Geol Rundsch 46:17–26

    Article  Google Scholar 

  • Dohr G, Fuchs K (1967) Statistical evaluation of deep crustal reflections in Germany. Geophysics 32(6):951–967

    Article  Google Scholar 

  • Dong S, Li T, Lü Q, Gao R, Yang J, Chen X, Wei W (2013) Progress in deep lithospheric exploration of the continental China: a review of the SinoProbe. Tectonophysics 606:1–13

    Article  Google Scholar 

  • Douma H, Roy Chowdhury K (2001) Amplitude effects due to multi-scale impedance contrasts and multiple scattering: implications for Ivrea-type continental lower crust. Geophys J Int 147(2):435–448

    Article  Google Scholar 

  • EarthScope. Exploring the structure and evolution of the North American continent. http://www.earthscope.org

  • Eccles JD, White RS, Christie PAF (2011) The composition and structure of volcanic rifted continental margins in the North Atlantic: further insight from shear-waves. Tectonophysics 508:22–33

    Article  Google Scholar 

  • Emmerich H, Zwielich J, Muller G (1993) Migration of synthetic seismograms for crustal structures with random heterogeneities. Geophys J Int 113:225–238

    Article  Google Scholar 

  • Emmermann R, Lauterjung J (1997) The German Continental Deep Drilling Program KTB: overview and major results. J Geophys Res 102(B8):18,179–18,201

    Article  Google Scholar 

  • Finlayson DM (2010a) BIRPS startup: deep seismic profiling along the MOIST line on the continental shelf around the British Isles, 1981. http://www.earthscrust.org.au/science/startups/birps-su.html

  • Finlayson DM (2010b) COCORP startup: the first deep seismic profiling of the continental crust in USA, Hardeman County, Texas, 1975. http://www.earthscrust.org.au/science/startups/cocorp-su.html

  • Flack C, Warner M (1990) Three-dimensional mapping of seismic reflections from the crust and upper mantle, northwest of Scotland. Tectonophysics 173:469–481

    Article  Google Scholar 

  • Gamburtsev GA (1952) Deep seismic soundings of the earth’s crust. Doklady Akad Nauk SSSR 87:943–945

    Google Scholar 

  • Gebrande H, Castellarin A, Luschen E, Neubauer F, Nicolich R (eds) (2006) TRANSALP – a transect through a young collisional orogen, Tectonophysics 414

    Google Scholar 

  • Gibbs AK (1986) Seismic reflection profiles of precambrian crust: a qualitative assessment. In: Barazangi M, Brown L (eds) Reflection seismology: the continental crust. Geodynamic series, vol 14. American Geophysical Union, Washington, DC, pp 95–106

    Chapter  Google Scholar 

  • Górszczyk A, Operto S, Schenini L, Yamada Y (2019) Crustal-scale depth imaging via joint full-waveform inversion of ocean-bottom seismometer data and pre-stack depth migration of multichannel seismic data: a case study from the eastern Nankai Trough. Solid Earth 10:765–784

    Article  Google Scholar 

  • György S (ed) (1972) The crustal structure of central and southeastern Europe based on the results of explosion seismology. Hungarian Geophysical Institute Roland Eötvös, Budapest. Geophysical Transactions

    Google Scholar 

  • Hansen K, Roy Chowdhury K, Phinney RA (1988) The sign filter for seismic event detection. Geophysics 53(8):1024–1033

    Article  Google Scholar 

  • Heikkinen P, Kukkonen I, Thybo H (eds) (2011) Special issue – Seismix 2008, active and passive plate margins and subduction zones, Tectonophysics 508

    Google Scholar 

  • Hobbs RW (1990) Effective Q determiantion using frequency methods on BIRPS data. Tectonophysics 173:25–30

    Article  Google Scholar 

  • Hole JA (1992) Nonlinear high-resolution three-dimensional seismic travel time tomography. J Geophys Res 97(B5):6553–6562

    Article  Google Scholar 

  • Holliger K, Levander AR (1992) A stochastic view of lower crustal fabric based on evidence from the Ivrea zone. Geophys Res Lett 19(11):1153–1156

    Article  Google Scholar 

  • Holliger K, Levander AR, Goff JA (1993) Stochastic modeling of the reflective lower crust: petrophysical and geological evidence from the Ivrea zone (Northern Italy). J Geophys Res 98:11967–11980

    Article  Google Scholar 

  • Hurich CA (1996) Statistical description of seismic reflection wave fields: a step towards quantitative interpretation of deep seismic reflection profiles. Geophys J Int 125:719–728

    Article  Google Scholar 

  • Hurich CA (2003) The nature of crustal seismic heterogeneity: a case study from the Grenville Province. In: Heterogeneity in the crust and upper mantle: nature, scaling, and seismic properties. Kluwer Academic, New York, pp 299–320

    Chapter  Google Scholar 

  • Hurich CA, Kocurko A (2000) Statistical approaches to interpretation of seismic reflection data. Tectonophysics 329:251–267

    Article  Google Scholar 

  • IGCP-559 (2010a) Andrija Mohorovicic (1857–1936) – defining the earth’s crust. http://www.earthscrust.org.au/science/historic/andrija.html

  • IGCP-559 (2010b) International symposium on deep structure of the continents and their margins series. http://www.earthscrust.org.au/deep_structure_of_the_continents.htm

  • IGCP-559 (2010c) Seismic imaging programs. http://www.earthscrust.org.au/links.html

  • Ito Y, Shiomi K, Nakajima J, Hino R (2012) Autocorrelation analysis of ambient noise in northeastern Japan subduction zone. Tectonophysics 572–573:38–46

    Article  Google Scholar 

  • Kaila KL, Krishna VG, Roy Chowdhury K, Narain H (1978) Structure of the Kashmir Himalaya from deep seismic soundings. J Geol Soc India 19:1–20

    Google Scholar 

  • Kaila KL, Roy Chowdhury K, Reddy PR, Krishna VG, Narain H, Subbotin SI, Sollogub VB, Chekunov AV, Kharetchko GE, Lazarenko MA, Ilchenko TV (1979) Crustal structure along Kavali-Udipi profile in the Indian peninsular shield from deep seismic sounding. J Geol Soc India 20:307–333

    Google Scholar 

  • Kanao M, Fujiwara A, Miyamachi H, Toda S, Ito K, Tomura M, Ikawa T, The SEAL Geotransect Group (2011) Reflection imaging of the crust and the lithospheric mantle in the Lützow-Holm complex, Eastern Dronning Maud Land, Antarctica, derived from SEAL transects. Tectonophysics 508:73–84

    Article  Google Scholar 

  • Kanasewich ER, Clowes RM, McLoughan CH (1969) A buried precambrian rift in western Canada. Tectonophysics 8:513–527

    Article  Google Scholar 

  • Khan MA, Mechie J, Birt C, Byrne G, Gaciri S, Jacob B, Keller GR, Maguire PKH, Novak O, Nyambok IO, Pate JP, Prodehl C, Riaroh D, Simiyu S, Thybo H (1999) The lithospheric structure of the Kenya Rift as revealed by wide-angle seismic measurements. In: MacNiocaill C, Ryan P (eds) Continental tectonics. Special publication, vol 164. Geological Society, London, pp 257–269

    Google Scholar 

  • Klemperer SL, Mooney WD (eds) (1998a) Deep seismic profiling of the continents I: general results and new methods, Tectonophysics 286

    Google Scholar 

  • Klemperer SL, Mooney WD (eds) (1998b) Deep seismic profiling of the continents II: a global survey, Tectonophysics 288

    Google Scholar 

  • Kong SM, Phinney RA, Roy Chowdhury K (1985) A nonlinear signal detector for enhancement of noisy seismic record sections. Geophysics 50(4):539–550

    Article  Google Scholar 

  • Kumar V, Oueity J, Clowes RM, Herrmann F (2011) Enhancing crustal reflection data through curvelet denoising. Tectonophysics 508:106–116

    Article  Google Scholar 

  • Levander AR, Gibson BS (1991) Wide-angle seismic reflections from two-dimensional random target zones. J Geophys Res 96(B6): 10251–10260

    Article  Google Scholar 

  • Leven JH, Finlayson DM, Wright C, Dooley JC, Kennet BLN (eds) (1990) Seismic probing of continents and their margins, Tectonophysics 173

    Google Scholar 

  • Liner CL (2004) Elements of 3D seismology. PennWell corporation, Tulsa

    Google Scholar 

  • Maguire PKH, Keller GR, Klemperer SL, Mackenzie GD, Keranen K, Harder S, O’Reilly B, Thybo H, Asfaw L, Khan MA, Amha M (2006) Crustal structure of the northern Main Ethiopian Rift from the EAGLE controlled-source survey; a snapshot of incipient lithospheric break-up; special publication. In: Yirgu G, Ebinger CJ, Maguire PKH (eds) The Afar volcanic province within the East African rift system, vol 259. Geological Society, London, pp 269–292

    Google Scholar 

  • Makovsky Y, Klemperer SL (1999) Measuring the seismic properties of Tibetan bright spots: evidence for free aqueous fluids in the Tibetan middle crust. J Geophys Res 104(B5):10795–10825

    Article  Google Scholar 

  • Malinowski M, Crawczyk CM, Carbonell R, Rawlinson N (eds) (2019) Special issue – Advances in seismic imaging across the scales. European Geosciences Union. https://www.solid-earth.net/special-issue986.html

  • Matthews D, Smith C (eds) (1987) Deep seismic reflection profiling of the continental lithosphere. Royal Astronomical Society, vol 89. Blackwell, Oxford, UK

    Google Scholar 

  • Meissner R, Brown L, Dürbaum H-J, Franke W, Fuchs K, Siefert F (eds) (1991) Continental lithosphere: deep seismic reflections. Geodynamic series, vol 22. American Geophysical Union, Washington, DC

    Google Scholar 

  • Meissner R, Rabbel W, Kern H (2006) Seismic lamination and anisotropy of the lower continental crust. Tectonophysics 416:81–99

    Article  Google Scholar 

  • Menke W, Chen R (1984) Numerical studies of the coda falloff rate of multiply scattered waves in randomly layered media. Bull Seismol Soc Am 74(5):1605–1621

    Google Scholar 

  • Mereu RF, Kovach RJ (1970) A portable inexpensive seismic system for crustal studies. Bull Seismol Soc Am 60(5):1607–1613

    Google Scholar 

  • Mooney WD, Brocher TM (1987) Coincident seismic reflection/refraction studies of the continental lithosphere: a global review. Rev Geophys 25:723–742. American Geophysical Union

    Article  Google Scholar 

  • Morgan JV, Hadwin M, Warner MR, Barton PJ, Morgan RPL (1994) The polarity of deep seismic reflections from the lithospheric mantle: evidence for a relict subduction zone. Tectonophysics 232:319–328

    Article  Google Scholar 

  • Morozov IB, Morozova EA, Smithson SB, Solodilov LN (1998) 2-D Image of seismic attenuation beneath the deep seismic sounding profile “Quartz,” Russia

    Google Scholar 

  • Morozov IB, Morozova EA, Smithson SB, Solodilov LN (undated) Long range profile Quartz. www.adc1.iris.edu/data/reports/misc.ext/QUARTZ.pdf

  • Nielsen L, Thybo H (2006) Identification of crustal and upper mantle heterogeneity by modelling of controlled-source seismic data. Tectonophysics 416:209–228

    Article  Google Scholar 

  • Oliver J, Dobrin M, Kaufman S, Meyer R, Phinney R (1976) Continuous seismic reflection profiling of the deep basement, Hardeman County, Texas. Geol Soc Am Bull 87:1537–1546

    Article  Google Scholar 

  • Palomeras I, Carbonell R, Ayarza P, Fernàndez M, Simancas JF, Poyatos DM, Lodeiro FG, Pérez-Estaún A (2011) Geophysical model of the lithosphere across the Variscan Belt of SW-Iberia: multidisciplinary assessment. Tectonophysics 508:42–51

    Article  Google Scholar 

  • PASSCAL. Program of array seismic studies of continental lithosphere. http://iris.edu/hq/files/programs/passcal

  • Pavlenkova NI (2011) Seismic structure of the upper mantle along long-range PNE profiles – rheological implication. Tectonophysics 508:85–95

    Article  Google Scholar 

  • Pavlenkova GA, Pavlenkova NI (2006) Upper mantle structure of Northern Eurasia for peaceful nuclear explosion data. Tectonophysics 416:33–52

    Article  Google Scholar 

  • Peddy C, Pinet B, Masson D, Scrutton R, Sibuet JC, Warner MR, Lefort JP, Shroeder IJ, BIRPS, ECORS (1989) Crustal structure of the Goban Spur continental margin, Northeast Atlantic, from deep seismic reflection profiling. J Geol Soc 146:427–437

    Article  Google Scholar 

  • Percival JA, Green AG, Milkerei B, Cook FA, Geis W, West GF (1989) Seismic reflection profiles across deep continental crust exposed in the Kapuskasing uplift structure. Nature 342:416–420

    Article  Google Scholar 

  • Phinney RA (1986) A seismic cross-section of the New England Appalachians: the orogen exposed. In: Barazangi M, Brown L (eds) Reflection seismology: the continental crust. Geodynamic series, vol 14. American Geophysical Union, Washington, DC, pp 151–172

    Google Scholar 

  • Phinney R, Roy Chowdhury K (1989) Reflection seismic studies of crustal structure in the Eastern United States. In: Pakiser L, Mooney W (eds) Geophysical framework of the continental United States: GSA memoir, vol 172. Geological Society of America, Boulder, pp 613–653

    Chapter  Google Scholar 

  • Pratt TL, Mondary JF, Brown LD (1993) Crustal structure and deep reflector properties: wide angle shear and compressional wave studies of the midcrustal surrency bright spot beneath southeastern Georgia. J Geophys Res 98(B10):17,723–17,735

    Article  Google Scholar 

  • Pullammanappallil S, Levander A, Larkin S (1997) Estimation of crustal stochastic parameters from seismic exploration data. J Geophys Res 102(B7):15,269–15,286

    Article  Google Scholar 

  • Pylypenko VN, Verpakhovska OO, Starostenko VI, Pavlenkova NI (2011) Wave imgaes of the crustal structure from refraction and wide-angle reflection migrations along the DOBRE profile (Dnieper-Donets paleorift). Tectonophysics 508:96–105

    Article  Google Scholar 

  • Rawlinson N, Goleby B (eds) (2012) Special issue – Seismic imaging of continents and their margins: new research at the confluence of active and passive seismology, Tectonophysics 572–573

    Google Scholar 

  • Rawlinson N, Pilia S, Young M, Salmon M, Yang Y (2016) Crust and upper mantle structure beneath southeast Australia from ambient noise and teleseismic tomography. Tectonophysics 689:143–156

    Article  Google Scholar 

  • Rawlinson N, Stephenson R, Carbonell R (eds) (2017) Special issue – Seismic 2016: advances in active and passive seismic imaging of continents and their margins, Tectonophysics 718

    Google Scholar 

  • Reddy PR, Venkateswaralu N, Koteswar Rao P, Prasad ASSSRS (1999) Crustal structure of peninsular shield, India from DSS studies. Curr Sci 77:1606–1611

    Google Scholar 

  • Roberts AW, Hobbs RW, Goldstein M, Moorkamp M, Jegen M, Heincke B (2012) Crustal constraint through complete model space screening for diverse geophysical datasets facilitated by emulation. Tectonophysics 572–573:47–63

    Article  Google Scholar 

  • Roy Chowdhury K, Hargraves RB (1981) Deep seismic soundings in India and the origin of continental crust. Nature 291(5817):648–650

    Article  Google Scholar 

  • Ryberg T, Fuchs K, Egorkin A, Solodilov L (1995) Observation of high-frequency teleseismic Pn on the long-range Quartz profile across northern Russia. J Geophys Res 100(B9):18151–18163

    Article  Google Scholar 

  • Santosh M, Carbonell R, Artemieva I, Badal J (eds) (2014) Special issue – Advances in seismic imaging of crust and mantle, Tectonophysics 627

    Google Scholar 

  • Seismix-2018-abs (2018) Book of abstracts, 18th international SESIMIX symposium, seismology between the poles, Cracow. http://seismix2018.pl/abstract

  • Sheriff RE, Geldart LP (1995) Exploration seismology, 2nd edn. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Simancas F, Carbonell R, Gonzáles-Lodeiro F, Estaún AP, Juhlin C, Ayarza P, Kashubin A, Azor A, Poyatos DM, Almodóvar G, Pascual E, Sáez R, Expósito I (2003) Crustal structure of the transpressional Variscan of SW Iberia: SW Iberia deep seismic reflection profile (IBERSEIS). Tectonics 22(6):1-1–1-19

    Article  Google Scholar 

  • Smithson SB, Brown SK (1977) A model for lower continental crust. Earth Planet Sci Lett 35:134–144

    Article  Google Scholar 

  • Smythe DK, Dobinson A, McQuillin R, Brewer JA, Matthews DH, Blundell DJ, Kelk B (1982) Deep structure of the Scottish Caledonides revealed by the MOIST reflection profile. Nature 299:338–340

    Article  Google Scholar 

  • Smythe DK, Smithson SB, Gillen C, Humphreys C, Kristoffersen Y, Karev NA, Garipov VZ, Pavlenkova NI, the Kola-92 Working Group (1994) Project images crust, collects seismic data in world’s largest borehole. EOS Trans Am Geophys Union 75:473–476

    Article  Google Scholar 

  • Snieder R, Wapenaar K (2010) Imaging with ambient noise. Phys Today 63(9):44–49

    Article  Google Scholar 

  • Snyder DB, Eaton DW, Hurich CA (eds) (2006) Seismic probing of continents and their margins, Tectonophysics 420

    Google Scholar 

  • Steinhart JS, Meyer RP (1961) Explosion studies of continental structure. Carnegie Institution, Washington, DC. publ 622

    Google Scholar 

  • Syracuse EM, Zhang H, Maceira M (2017) Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah, United States. Tectonophysics 718:105–117

    Article  Google Scholar 

  • Texan. Miniature seismic recorder. http://iris.edu/hq/files/programs/passcal/docs/125A-01.pdf

  • The DOBREfraction‘99 Working Group (2003) “DOBREfraction‘99” – velocity model of the crust and upper mantle beneath the Donbas Foldbelt (East Ukraine). Tectonophysics 371:81–110

    Article  Google Scholar 

  • Thybo H (ed) (2002) Deep seismic profiling of the continents and their margins, Tectonophysics 355

    Google Scholar 

  • USARRAY. A continental-scale seismic observatory. http://www.usarray.org

  • van der Baan M (2000) Recognition and reconstruction of coherent energy with application to deep seismic reflection data. Geophysics 65(2):656–667

    Article  Google Scholar 

  • Vasudevan K, Cook FA (1998) Skeletons and fractals – a statistical approach to deep crustal seismic data processing and interpretation. Tectonophysics 286:93–109

    Article  Google Scholar 

  • Vermeer GJO (2002) 3-D seismic survey design. Society of Exploration Geophysicists, Tulsa

    Book  Google Scholar 

  • Virieux J, Operto S (2009) An overview of full-waveform inversion in exploration geophysics. Geophysics 74(6):wcc1–wcc26

    Article  Google Scholar 

  • Virieux J, Asnaashari A, Brossier R, Métivier L, Ribodetti A, Zhou W (2017) An overview of full-waveform inversion in exploration geophysics. In: Encyclopedia of exploration geophysics. SEG, Tulsa, Oklahoma, pp R1-1–R1-40. https://doi.org/10.1190/1.9789560803027.entry6

  • Wapenaar K, Snieder R (2007) Chaos tamed. Nature 447:643

    Article  Google Scholar 

  • Warner M (1990) Absolute reflection coefficients from deep seismic reflections. Tectonophysics 173:15–23

    Article  Google Scholar 

  • White DJ, Ansorge J, Bodoky TJ, Hajnal Z (eds) (1996) Seismic reflection probing of the continents and their margins, Tectonophysics 264

    Google Scholar 

  • Yegorova T, Pavlenkova G (2014) Structure of the upper mantle of Northern Eurasia from 2D density modeling on seismic profiles with peaceful nuclear explosions. Tectonophysics 627:57–71

    Article  Google Scholar 

  • Yilmaz Ö (2001) Seismic data analysis, processing, inversion and interpretation of seismic data. Investigations in geophysics, vol I, 2nd edn. Society of Exploration Geophysicists, Tulsa

    Book  Google Scholar 

  • Zelt CA (1995) Modelling strategies and model assessment for wide-angle seismic traveltime data. Geophys J Int 139:183–204

    Article  Google Scholar 

  • Zelt CA, Smith RB (1992) Seismic travel time inversion for 2-D crustal velocity structure. Geophys J Int 108:16–34

    Article  Google Scholar 

  • Zhao W, Nelson KD, Project INDEPTH team (1993) Deep seismic reflection evidence for continental under thrusting beneath southern Tibet. Nature 366:557–559

    Article  Google Scholar 

  • Zingg A (1990) The Ivrea crustal cross-section (Northern Italy and Southern Switzerland). In: Salisbury MH, Fountain DM (eds) Exposed cross sections of the continental crust. Kluwer, Dordrecht, pp 1–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabir Roy Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Roy Chowdhury, K. (2020). Deep Seismic Reflection and Refraction Profiling. In: Gupta, H. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10475-7_226-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10475-7_226-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10475-7

  • Online ISBN: 978-3-030-10475-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics