Skip to main content

Cellular Automata Hardware Implementation

  • Reference work entry
  • First Online:
Book cover Cellular Automata
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer Science+Business Media LLC 2018

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  • Adamides ED, Iliades P, Argyrakis J, Tsalides P, Thanailakis A (1993) Cellular logic bus arbitration. IEE Proc-E Comput Digit Tech (IEE) 140(6):289–296

    Google Scholar 

  • Albicki A, Khare M (1987) Cellular automata used for test pattern generation. In: Proceedings of the international conference on computer design. IEEE Computer Society Press, Los Alamitos, pp 56–59

    Google Scholar 

  • Altera 2007 Designing and using FPGAs for double precision floating-point math. White Paper

    Google Scholar 

  • Amlani I, Orlov AO, Toth G, Bernstein GH, Lent CS, Snider GL (1999) Digital logic gate using quantum-dot cellular automata. Science 284:289–291

    Article  Google Scholar 

  • Andreadis I, Karafyllidis I, Tzionas P, Thanailakis A, Tsalides P (1996) A new hardware module for automated visual inspection based on a cellular automaton architecture. J Intell Robot Syst (Springer) 16(1):89–102

    Article  Google Scholar 

  • Bak P, Tang C (1989) Earthquakes as a self-organised critical phenomenon. J Geophys Res 94:15635–15637

    Article  Google Scholar 

  • Bardell PH (1990) Analysis of cellular automata used as pseudo-random pattern generators. In: Proceedings of the international test conference ’90, pp 762–768

    Chapter  Google Scholar 

  • Bassham L et al. (2010) A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST. https://csrc.nist.gov/CSRC/media/Projects/Random-Bit-Generation/documents/sts-2_1_2.zip

  • Bhattacharjee S (1997) Some studies on data compression, error correcting code and boolean function analysis. Ph.D. Thesis, I.I.T., Kharagpur

    Google Scholar 

  • Burridge R, Knopoff L (1967) Model and theoretical seismicity. Bull Seismol Soc Am 57(3):341–371

    Google Scholar 

  • Card HC, Thanailakis A, Pries W, McLeod RD (1986) Analysis of bounded linear cellular automata based on a method of image charges. J Comput Syst Sci (Elsevier) 33(3):473–480

    Article  MathSciNet  Google Scholar 

  • Chen RJ, Lai JL (2004) VLSI implementation of the universal 2-D CAT/ICAT system. In: Proceedings of the 11th IEEE international conference on electronics, circuits and systems, pp 187–190

    Google Scholar 

  • Chattopadhyay S (1996) Some studies on theory and applications of additive cellular automata. PhD Thesis, I.I.T., Kharagpur, India

    Google Scholar 

  • Chaudhuri PP, Chowdhury DR, Nandi S, Chattopadhyay S (1997) Additive cellular automata: theory and applications, vol 1. Wiley-IEEE Computer Society Press, Los Alamitos

    MATH  Google Scholar 

  • Chowdhury DR (1992) Theory and applications of additive cellular automata for reliable and testable VLSI circuit design. Ph.D. Thesis, I.I.T., Kharagpur

    Google Scholar 

  • Chowdhury DR, Chaudhuri PP (1989) Parallel memory testing: a BIST approach. In: Proceedings of the 3rd international workshop on VLSI design, Bangalore, pp 373–377

    Google Scholar 

  • Chowdhury DR, Basu S, Gupta IS, Chaudhuri PP (1994a) Design of CAECC-cellular automata based error correcting code. IEEE Trans Comput (IEEE) 43(6):759–764

    Article  MathSciNet  MATH  Google Scholar 

  • Chowdhury DR, Sengupta IS, Chaudhuri PP (1994b) A class of two-dimensional cellular automata and applications in random pattern testing. J Electron Test Theory Appl 5(1):67–82

    Article  Google Scholar 

  • Das AK (1990) Additive cellular automata: theory and applications as a built-in self-test structure. Ph.D. Thesis, I.I.T., Kharagpur

    Google Scholar 

  • Das AK, Chaudhuri PP (1989) An efficient on-chip deterministic test pattern generation scheme. Microprocess Microprogram (Elsevier) 26(3):195–204

    Article  Google Scholar 

  • Das AK, Chaudhuri PP (1993) Vector space theoretic analysis of additive cellular automata and its applications for pseudo-exhaustive test pattern generation. IEEE Trans Comput (IEEE) 42(3):340–352

    Article  MathSciNet  MATH  Google Scholar 

  • Das Sukanta (2006) Theory and applications of nonlinear cellular automata in vlsi design. Ph.D. thesis, Bengal Engineering And Science University, Shibpur West Bengal

    Google Scholar 

  • Dourvas N, Tsompanas M-AI, Sirakoulis GC, Tsalides P (2015) Hardware acceleration of cellular automata physarum polycephalum model. Parallel Process Lett (World Scientific) 25:1540006. [25 pages]

    Article  MathSciNet  MATH  Google Scholar 

  • Feynman RP (1982) Simulating physics with computers. Int J Theor Phys (Springer) 21(6/7):467–488

    Article  MathSciNet  Google Scholar 

  • Gardner M (1970) The fantastic combinations of John Conway’s new solitaire game “life”. Sci Am (IEEE) 223:120–123

    Article  Google Scholar 

  • Georgoudas IG, Sirakoulis GS, Emmanouil MS, Andreadis I (2007) A cellular automaton simulation tool for modelling seismicity in the region of Xanthi. Environ Model Softw (Elsevier) 22(10):1455–1464

    Article  Google Scholar 

  • Georgoudas IG, Sirakoulis GC, Andreadis I (2009) On chip earthquake simulation model using potentials. Nat Hazards (Springer) 50(3):519–537

    Article  Google Scholar 

  • Georgoudas IG, Koltsidas G, Sirakoulis GC, Andreadis I (2010a) A cellular automaton model for crowd evacuation and its auto-defined obstacle avoidance attribute. In: Proceedings of third international workshop on crowds and cellular automata (C&CA-2010) organized within the 9th international conference on cellular automata for research and industry (ACRI2010), Ascoli-Pizeno, pp 455–464

    Google Scholar 

  • Georgoudas IG, Kyriakos P, Sirakoulis GC, Andreadis I (2010b) An FPGA implemented cellular automaton crowd evacuation model inspired by the electrostatic-induced potential fields. Microprocess Microsyst (Elsevier) 34(7–8):285–300

    Article  Google Scholar 

  • Georgoudas I, Sirakoulis GC, Andreadis I (2011) An anticipative crowd management system preventing clogging in exits during pedestrian evacuation process. IEEE Syst J (IEEE) 5(1):129–141

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Google Scholar 

  • Gutenberg B, Richter CF (1956) Magnitude and energy of earthquakes. Ann Geophys 9:1–15

    Google Scholar 

  • Halbach M, Hoffmann R (2004) Implementing cellular automata in FPGA logic. In: Proceedings of the 18th international parallel and distributed processing symposium, Santa Fe, pp 3531–3535

    Google Scholar 

  • Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407:487–490

    Article  Google Scholar 

  • Hortensius PD, McLeod RD, Card HC (1989a) Parallel pseudo-random number generation for VLSI systems using cellular automata. IEEE Trans Comput (IEEE) 38(10):1466–1473

    Article  Google Scholar 

  • Hortensius PD, McLeod RD, Pries W, Miller DM, Card HC (1989b) Cellular automata based pseudo-random number generators for built-in self-test. IEEE Trans Comput-Aided Des (IEEE) 8(8):842–859

    Article  Google Scholar 

  • Hortensius PD, McLeod RD, Card HC (1990) Cellular automata based signature analysis for built-in self-test. IEEE Trans Comput (IEEE) 39(10):1273–1283

    Article  Google Scholar 

  • Jendrsczok J, Ediger P, Hoffmann R (2009) A scalable configurable architecture for the massively parallel GCA model. Int J Parallel Emergent Distrib Syst 24(4):275–291

    Article  MathSciNet  MATH  Google Scholar 

  • Kalogeropoulos G, Sirakoulis GC, Karafyllidis I (2013) Cellular automata on FPGA for real-time urban traffic signals control. J Supercomput (Springer) 65:1–18

    Article  Google Scholar 

  • Karafyllidis I, Ioannidis A, Thanailakis A, Tsalides P (1997) Geometrical shape recognition using a cellular automaton architecture and its VLSI implementation. Real-Time Imaging (Springer) 3(4):243–254

    Article  Google Scholar 

  • Karafyllidis I, Thanailakis A (1997) A model for predicting forest fire spreading using cellular automata. Ecol Modell (Elsevier) 99:87–97

    Article  Google Scholar 

  • Karafyllidis I, Andreadis I, Tzionas P, Tsalides P, Thanailakis A (1996) A cellular automaton for the determination of the mean velocity of moving objects and its VLSI implementation. Pattern Recogn (Elsevier) 29(4):689–699

    Article  Google Scholar 

  • Karafyllidis I, Andreadis I, Tsalides P, Thanailakis A (1998) Non-linear hybrid cellular automata as pseudorandom pattern generators for VLSI systems. VLSI Des 7(2):177–189

    Article  Google Scholar 

  • Katis I, Sirakoulis GC (2012) Cellular automata on fpgas for image processing. In: Proceedings of the 16th panhellenic conference on informatics (PCI 2012), Athens, pp 308–313

    Chapter  Google Scholar 

  • Kotoulas L, Tsarouchis D, Sirakoulis GC, Andreadis I (2006) 1-D cellular automaton for pseudorandom number generation and its reconfigurable hardware implementation. In: Proceedings of 2006 I.E. international symposium on circuits and systems (ISCAS’2006), Island of Kos, pp 4627–4630

    Google Scholar 

  • Landman BS, RL R (1971) On a pin versus block relationship for partitions of logic graphs. IEEE Trans Comput C – (IEEE) 20(12):1469–1479

    Article  Google Scholar 

  • Langhammer, M. 2007. Double precision floating point on FPGAs. In: Proceedings of the 3rd annual reconfigurable systems summer Institute. National Center for Supercomputing Applications, Urbana

    Google Scholar 

  • Lanzerotti MY, Fiorenza G, Rand RA (2005) Microminiature packaging and integrated circuitry: the work of {E. F. Rent}, with an application to on-chip interconnection requirements. IBM J Res Develop (IBM) 49(4,5):777–803

    Article  Google Scholar 

  • Lent CS, Tougaw D (1997) A device architecture for computing with quantum dots. Proc IEEE (IEEE) 85(4):541–557

    Article  Google Scholar 

  • Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology (IOP) 4(1):49–57

    Article  Google Scholar 

  • Mardiris V, Sirakoulis GC, Mizas C, Karafyllidis I, Thanailakis A (2008) A CAD system for modeling and simulation of computer networks using cellular automata. IEEE Trans Syst Man Cybern – Part C (IEEE) 38(2):253–264

    Article  Google Scholar 

  • Mardiris V, Sirakoulis GC, Karafyllidis I (2015) Automated design architecture for 1-D cellular automata using quantum cellular automata. IEEE Trans Comput (IEEE) 64(9):2476–2489

    Article  MathSciNet  MATH  Google Scholar 

  • Marriot AP, Tsalides P, Hicks PJ (1991) VLSI implementation of smart imaging system using two-dimensional cellular automata. IEE Proc-G Circuits Dev Syst (IEE) 138(5):582–586

    Article  Google Scholar 

  • McLeod RD, Hortensius P, Schneider R, Card HC, Bridges G, Pries W (1986) CALBO-cellular automaton logic block observation. In: Proceedings of the Canadian conference on VLSI. IEEE Computer Society Press, Los Alamitos, pp 171–176

    Google Scholar 

  • Minsky M (1982) Cellular vacuum. Int J Theor Phys (Springer) 21(6/7):537–551

    Article  MATH  Google Scholar 

  • Misra S (1992) Theory and applications of additive cellular automata for easily testable VLSI circuit design. Ph.D. thesis, I.I.T., Kharagpur

    Google Scholar 

  • Murtaza S, Hoekstra AG, Sloot PMA (2007) Performance modeling of 2D cellular automata on FPGA. In: Proceedings of the international conference on field programmable logic and applications, pp 74–78

    Google Scholar 

  • Murtaza S, Hoekstra AG, Sloot PMA (2008) Floating point based cellular automata simulations using a dual FPGA-enabled system. In: Proceedings of the 2nd international workshop on high-performance reconfigurable computing technology and applications, pp 1–8

    Google Scholar 

  • Murtaza S, Hoekstra AG, Sloot PMA (2011) Cellular automata simulations on a FPGA cluster. Int J High Perform Comput Appl 25(2):193–204

    Article  Google Scholar 

  • Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I Fr 2(12):2221–2229

    Article  Google Scholar 

  • Nakagaki T, Yamada H, Toth A (2000) Intelligence: maze-solving by an amoeboid organism. Nature (Springer Nature) 407(6803):470–470

    Article  Google Scholar 

  • Nalpantidis L, Amanatiadis A, Sirakoulis GC, Gasteratos A (2011) An efficient hierarchical matching algorithm for processing uncalibrated stereo vision images and its hardware architecture. IET Image Process (IET) 5(5):481–492

    Article  Google Scholar 

  • Nandi S (1994) Additive cellular automata: theory and applications for testable circuit design and data encryption. Ph.D. thesis, I.I.T., Kharagpur

    Google Scholar 

  • Ntinas V, Moutafis B, Trunfio GA, Sirakoulis GC (2017) Parallel fuzzy cellular automata for data-driven simulation of wildfire simulations. J Comput Sci (Elsevier) 21:469–485

    Article  Google Scholar 

  • Omohundro S (1984) Modelling cellular automata with partial differential equations. Phys D Nonlinear Phenomena (Elsevier) 10:128–134

    Article  MathSciNet  MATH  Google Scholar 

  • Pitsianis N, Tsalides P, Bleris GL, Thanailakis A, Card HC (1989a) Deterministic one-dimensional cellular automata. J Stat Phys (Elsevier) 56(1):99–112

    Article  MathSciNet  MATH  Google Scholar 

  • Pitsianis N, Tsalides P, Bleris GL, Thanailakis A, Card HC (1989b) Algebraic theory of bounded one-dimensional cellular automata. Complex Syst 3(2):209–227

    MathSciNet  MATH  Google Scholar 

  • Porter R, Frigo J, Conti A, Harvey N, Kenyon G, Gokhale M (2007) A reconfigurable computing framework for multi-scale cellular image processing. Microprocess Microsyst (Elsevier) 31(8):546–563

    Article  Google Scholar 

  • Pries W, Thanailakis A, Card HC (1986) Group properties of cellular automata and VLSI applications. IEEE Trans Comput (IEEE) 35(12):1013–1024

    Article  MATH  Google Scholar 

  • Progias P, Sirakoulis GC (2013) An FPGA processor for modelling wildfire spread. Math Comput Model (Elsevier) 57(5–6):1436–1452

    Article  Google Scholar 

  • Rukhin Andrew et al (2001) A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST. http://csrc.nist.gov/rng/

  • Serra M, Slater T, Muzio JC, Miller DM (1990) Analysis of one dimensional cellular automata and their aliasing probabilities. IEEE Trans Comput-Aided Des (IEEE) 9(7):767–778

    Article  Google Scholar 

  • Sirakoulis GC (2004) A TCAD system for VLSI implementation of the CVD process using VHDL. Integr VLSI J (Elsevier) 37(1):63–81

    Article  Google Scholar 

  • Sirakoulis GC (2015) The computational paradigm of cellular automata in crowd evacuation. Int J Found Comput Sci (World Scientific) 26(7):851

    Article  MathSciNet  MATH  Google Scholar 

  • s N, Thanailakis A (1999) A new simulator for the oxidation process in integrated circuit fabrication based on cellular automata. Model Simul Mater Sci Eng (IOP) 7(4):631–640

    Google Scholar 

  • Sirakoulis GC, Karafyllidis I, Mardiris V, Thanailakis A (2000a) Study of the effects of photoresist surface roughness and defects on developed profiles. Semicond Sci Technol (IOP Publishing) 15:98

    Article  Google Scholar 

  • Sirakoulis GC, Karafyllidis I, Thanailakis A (2000b) A cellular automaton model for the effect of population movement on epidemic propagation. Ecol Model (Elsevier) 133(3):209–223

    Article  Google Scholar 

  • Sirakoulis GC, Karafyllidis I, Thanailakis A, Mardiris V (2001) A methodology for VLSI implementation of cellular automata algorithms using VHDL. Adv Eng Softw (Elsevier) 32(3):189–202

    Article  MATH  Google Scholar 

  • Sirakoulis GC, Karafyllidis I, Thanailakis A (2003) A CAD system for the construction and VLSI implementation of cellular automata algorithms using VHDL. Microprocess Microsyst (Elsevier) 27:381–396

    Article  Google Scholar 

  • Srisuchinwong B, York TK, Tsalides P, Hicks PJ, Thanailakis A (1992) VLSI implementation of a mod-p multipliers using Homomorphisms and hybrid cellular automaton-based data compression techniques. IEE Proc-E Comput Digit Tech (IEE) 139(6):486–490

    Article  Google Scholar 

  • Toffoli T (1984a) Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Phys D Nonlinear Phenomena (Elsevier) 10(1–2):117–127

    Article  MathSciNet  MATH  Google Scholar 

  • Toffoli T (1984b) CAM: a high-performance cellular automaton machine. Phys D Nonlinear Phenomena (Elsevier) 10(1–2):195–204

    Article  MathSciNet  Google Scholar 

  • Tsalides P (1990) Cellular automata based built-in self-test structures for VLSI systems. IEE Electron Lett (IEE) 26(17):1350–1352

    Article  Google Scholar 

  • Tsalides P, Hicks PJ, York TA (1989) Three dimensional cellular automata and VLSI applications. IEE Proc-E Comput Digit Tech (IEE) 136(6):490–495

    Article  Google Scholar 

  • Tsalides P, York TA, Thanailakis A (1991) Pseudo-random number generators for VLSI systems based on linear cellular automata. IEE Proc-E Comput Digit Tech (IEE) 138(4):241–249

    Article  Google Scholar 

  • Tsalides P, Thanailakis A, Pitsanis N, Bleris GL (1992) Two-dimensional cellular automata: properties and applications of a new VLSI architecture. Comput J (Oxford) 35(4):A377–A386

    Google Scholar 

  • Tsiftsis A, Georgoudas IG, and Sirakoulis GCh (2016) Real data evaluation of a crowd supervising system for stadium evacuation and its hardware implementation. IEΕE Systems 10(2):649–660

    Article  Google Scholar 

  • Tsompanas M-AI, Sirakoulis GC (2012) Modeling and hardware implementation of an amoeba-like cellular automaton. Bioinspir Biomim (IOP) 7:036013. (19 pp.)

    Article  Google Scholar 

  • Tsompanas M-AI, Sirakoulis GC, Adamatzky A (2016) Physarum in silicon: the Greek motorways study. Nat Comput (Springer) 15(2):279–295

    Article  MathSciNet  Google Scholar 

  • Tzionas P, Tsalides P, Thanailakis A (1992) Design and VLSI implementation of a pattern classifier using pseudo 2D cellular automata. IEE Proc-G Circuits Dev Syst (IEE) 139(6):661–668

    Article  Google Scholar 

  • Tzionas P, Tsalides P, Thanailakis A (1996) A new-hybrid cellular automaton/neural network classifier for multi-valued patterns and its VLSI implementation. Integr VLSI J (Elsevier) 20(2):211–237

    Article  MATH  Google Scholar 

  • Ulam S (1952) Random processes and transformations. In: Proceedings of the international congress on mathematics, pp 264–275

    Google Scholar 

  • Vacca M, Wang J, Graziano M, Roch MR, Zamboni M (2015) Feedbacks in QCA: a quantitative approach. IEEE Trans Very Large Scale Integr VLSI Syst (IEEE) 23(10):2233–2243

    Article  Google Scholar 

  • Vichniac GY (1984) Simulating physics with cellular automata. Phys D Nonlinear Phenomena (Elsevier) 10:96–116

    Article  MathSciNet  MATH  Google Scholar 

  • Viola P, Jones MJ, Snow D (2003) Detecting pedestrians using patterns of motion and appearance. In: 2003 proceedings of IEEE international conference on computer vision, pp 734–741

    Google Scholar 

  • von Neumann J, Burks AW, and others (1966) Theory of self-reproducing automata. IEEE Trans Neural Netw (IEEE) 5: 3–14

    Google Scholar 

  • Vourkas I, Sirakoulis GC (2012) FPGA based cellular automata for environmental modeling. In: Proceedings of the 2012 I.E. international conference on electronics, circuits, and systems (ICECS 2012), Seville, pp 308–313

    Google Scholar 

  • Weston JL, Lee P (2008) FPGA implementation of cellular automata spaces using a CAM based cellular architecture. In: Proceedings of the NASA/ESA conference on adaptive hardware and systems, pp 315–322

    Google Scholar 

  • Wolfram S (1984) Universality and complexity in cellular automata. Phys D (Elsevier) 10(1–2):1–35

    MathSciNet  MATH  Google Scholar 

  • Wolkow R, Livadaru L, Pitters J, Taucerg M, Piva M, Salomons M, Cloutier M, Martins B (2014) Silicon atomic quantum dots enable beyond-CMOS electronics. In: Field-coupled nanocomputing, Lecture notes in computer science, Springer Berlin Heidelberg, Berlin, Heidelberg. vol 8280, pp 33–58

    Google Scholar 

  • York TK, Tsalides P, Srisuchinwong B, Hicks PJ, Thanailakis A (1991) Design and VLSI implementation of a mod-127 multiplier using cellular automaton-based data compression techniques. IEE Proc-E Comput Digit Tech (IEE) 138(5):351–356

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control (Elsevier) 8(3):338–353

    Article  MATH  Google Scholar 

Book & Reviews

  • Adamatzky A (2010a) Physarum machines: computers from slime mould, vol 74. World Scientific, Singapore/Hackensack

    Book  Google Scholar 

  • Adamatzky A (2010b) Game of life cellular automata. Springer, London

    Book  MATH  Google Scholar 

  • Chopard B, Droz M (1998) Cellular automata modeling of physical systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Hurst SL (1998) VLSI testing: digital and mixed analogue/digital techniques. The Institution of Electrical Engineering (IEE), London

    Book  Google Scholar 

  • Knuth DE (1981) The art of computer programming-seminumerical algorithms. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Maraglia George (1995) The Marsaglia random number CDROM including the Diehard battery of tests of randomness. Florida State University. https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/diehard/). Archived from the original on 25 Jan 2016

  • Pettey C (1997) Diffusion (cellular) models. In: Handbook of evolutionary computation. Oxford University Press

    Google Scholar 

  • Preston Kendall Jr, M.J.B. Duff. 1984. Modern cellular automata. Theory and applications Springer

    Google Scholar 

  • Rosin P, Adamatzky A, Sun X (2014) Cellular automata in image processing and geometry. Springer, Cham

    Book  MATH  Google Scholar 

  • Sirakoulis GC, S Bandini (2012) Cellular automata – proceedings of 10th international conference on cellular automata for research and industry, ACRI 2012, Springer

    Google Scholar 

  • Toffoli T, Margolus N (1987) Cellular automata machines: a new environment for modeling. MIT Press, Cambridge

    MATH  Google Scholar 

  • Was J, Sirakoulis GC, Bandini S (2014). Cellular automata – proceedings of 11th international conference on cellular automata for research and industry, ACRI 2014. Springer

    Google Scholar 

  • Wolfram S (1994) Cellular automata and complexity: collected papers. Westview Press, Boulder

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Ch. Sirakoulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sirakoulis, G.C. (2018). Cellular Automata Hardware Implementation. In: Adamatzky, A. (eds) Cellular Automata. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8700-9_673

Download citation

Publish with us

Policies and ethics