Skip to main content

Pathologic Classification and Biological Behavior of Pancreatic Neoplasia

  • Reference work entry
  • First Online:
Book cover Pancreatic Cancer

Abstract

Pancreatic neoplasms are classified according to the normal cells they recapitulate. These neoplasms’ clinicopathologic and biologic characteristics are determined mostly by their cellular lineage. Most are of ductal lineage, characterized by tubular units, cysts, and papilla or mucin formation and expression of mucin-related glycoproteins and oncoproteins. There are also genetic and molecular alterations that are fairly tumor specific.

Invasive ductal adenocarcinoma (DA) constitutes the vast majority (>85%) of carcinomas of ductal lineage. DA is characterized by insidious infiltration and rapid dissemination, despite its relatively well-differentiated histologic appearance. Presumed precursors include microscopic intraductal proliferative changes now termed pancreatic intraepithelial neoplasia (PanIN). PanINs represent neoplastic transformation ranging from early mucinous change (low-grade PanIN) to frank carcinoma in situ (high-grade PanIN). A similar neoplastic spectrum characterizes intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs), cystic ductal-mucinous tumors with papillae formation, which may be associated with DA. As such, these are regarded as mass-forming preinvasive neoplasia. Some IPMNs are associated with colloid-type invasive carcinoma, a clinicopathologically distinct indolent tumor.

Although most ductal pancreatic neoplasia show some degree of mucin formation, serous tumors, of which serous cystadenoma is the sole example, lack mucin formation, presumably because they recapitulate centroacinar ducts.

Among non-ductal pancreatic tumors, neuroendocrine neoplasms are the most common. The vast majority are well-differentiated, low-/intermediate-grade malignancies characterized by protracted clinical course. In contrast, poorly differentiated neuroendocrine carcinomas (small or large cell type) are exceedingly uncommon and highly aggressive. Pancreatic acinar lineage tumors, namely, acinar cell carcinomas and pancreatoblastomas – the latter mostly a childhood malignancy – are uncommon and are associated with aggressive clinical course, though not as dismal as DA. Solid pseudopapillary neoplasm is a female-predominant pancreatic tumor of undetermined lineage that follows a predominantly indolent course.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  2. Klimstra DS, Adsay V. Tumors of the pancreas. In: Odze RB, Goldblum JR, editors. Surgical pathology of the GI tract, liver, biliary tract and pancreas. Philadelphia: Saunders; 2015.

    Google Scholar 

  3. Thompson LDR, Basturk O, Adsay V. In: Mills SE, editor. Pancreas, in Sternberg’s diagnostic surgical pathology. Philadelphia: Wolters Kluwer Health; 2015.

    Google Scholar 

  4. Hruban RH, Pitman MB, Klimsra DS. Tumors of the pancreas. In: Silverberg SG, editor. AFIP Atlas of tumor pathology, vol. 6. Washington, DC: ARP Press; 2007.

    Google Scholar 

  5. Hruban RH, Iacobuzio-Donahue C, Wilentz RE, et al. Molecular pathology of pancreatic cancer. Cancer J. 2001;7:251–8.

    CAS  PubMed  Google Scholar 

  6. Hruban RH, Adsay NV. Molecular classification of neoplasms of the pancreas. Hum Pathol. 2009;40:612–23.

    Article  CAS  PubMed  Google Scholar 

  7. Waddell N, Pajic M, Patch AM, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518:495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hruban R, Kloppel G, Boffetta P, et al. Ductal adenocarcinoma of the pancreas. In: Bosman FT, Carneiro F, Hruban RH, et al., editors. WHO classification of tumors. Lyon: WHO Press; 2010. p. 281–91.

    Google Scholar 

  9. Jorgensen MT, Fenger C, Kloppel G, et al. Long-term survivors among Danish patients after resection for ductal adenocarcinoma of the pancreas. Scand J Gastroenterol. 2008;43:581–3.

    Article  PubMed  Google Scholar 

  10. Adsay NV, Klimstra DS, Klöppel G. Inflammatory conditions and pseudotumors of the pancreas and ampulla. Semin Diagn Pathol. 2005;21:260.

    Article  Google Scholar 

  11. Adsay N, Zamboni G. Paraduodenal pancreatitis: a clinico-pathologically distinct entity unifying “Cystic Dystrophy of Heterotopic Pancreas”, “Para-Duodenal Wall Cyst” and “Groove Pancreatitis”. Semin Diagn Pathol. 2005;21:247–54.

    Article  Google Scholar 

  12. Basturk O, Bandyopadhyay S, Feng J, et al. Predilection of pancreatic ductal adenocarcinoma cells to form duct-like structures in vascular and perineural spaces, mimicking normal ducts and PanIN: a peculiar form of tumor-stroma interaction. Mod Pathol. 2008;20:1486A.

    Google Scholar 

  13. Bandyopadhyay S, Basturk O, Coban I, et al. Isolated solitary ducts (naked ducts) in adipose tissue: a specific but underappreciated finding of pancreatic adenocarcinoma and one of the potential reasons of understaging and high recurrence rate. Am J Surg Pathol. 2009;33:425–9.

    Article  PubMed  Google Scholar 

  14. Adsay V, Logani S, Sarkar F, et al. Foamy gland pattern of pancreatic ductal adenocarcinoma: a deceptively benign-appearing variant. Am J Surg Pathol. 2000;24:493–504.

    Article  CAS  PubMed  Google Scholar 

  15. Adsay NV, Pierson C, Sarkar F, et al. Colloid (mucinous noncystic) carcinoma of the pancreas. Am J Surg Pathol. 2001;25:26–42.

    Article  CAS  PubMed  Google Scholar 

  16. Adsay NV, Merati K, Andea A, et al. The dichotomy in the preinvasive neoplasia to invasive carcinoma sequence in the pancreas: differential MUC1 and MUC2 expression supports the existence of two separate pathways of carcinogenesis. Mod Pathol. 2002;15:1087–95.

    Article  PubMed  Google Scholar 

  17. Adsay NV, Merati K, Nassar H, et al. Pathogenesis of colloid (pure mucinous) carcinoma of exocrine organs: coupling of gel-forming mucin (MUC2) production with altered cell polarity and abnormal cell-stroma interaction may be the key factor in the morphogenesis and indolent behavior of colloid carcinoma in the breast and pancreas. Am J Surg Pathol. 2003;27:571–8.

    Article  PubMed  Google Scholar 

  18. Tan MC, Basturk O, Brannon AR, et al. GNAS and KRAS mutations define separate progression pathways in intraductal papillary mucinous neoplasm-associated carcinoma. J Am Coll Surg. 2015;220:845–54. e1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Adsay V, Sarkar F, Vaitkevicius V, et al. Squamous cell and adenosquamous carcinomas of the pancreas: a clinicopathologic analysis of 11 cases (abstract). Mod Pathol. 2000;13:179A.

    Google Scholar 

  20. Makarova-Rusher OV, Ulahannan S, Greten TF, et al. Pancreatic squamous cell carcinoma: a population-based study of epidemiology, clinicopathologic characteristics and outcomes. Pancreas. 2016;45:1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Banville N, Geraghty R, Fox E, et al. Medullary carcinoma of the pancreas in a man with hereditary nonpolyposis colorectal cancer due to a mutation of the MSH2 mismatch repair gene. Hum Pathol. 2006;37:1498–502.

    Article  CAS  PubMed  Google Scholar 

  22. Muraki T, Reid MD, Basturk O, et al. Undifferentiated carcinoma with osteoclastic giant cells of the pancreas: clinicopathologic analysis of 38 cases highlights a more protracted clinical course than currently appreciated. Am J Surg Pathol. 2016;40:1203.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hruban RH, Adsay NV, Albores-Saavedra J, et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol. 2001;25:579–86.

    Article  CAS  PubMed  Google Scholar 

  24. Iacobuzio-Donahue CA, Velculescu VE, Wolfgang CL, et al. Genetic basis of pancreas cancer development and progression: insights from whole-exome and whole-genome sequencing. Clin Cancer Res. 2012;18:4257–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Basturk O, Hong SM, Wood LD, et al. A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas. Am J Surg Pathol. 2015;39:1730–41.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Furukawa T, Adsay N, Albores-Saavedra J, et al. Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Arch. 2005;447(5):794–9. PMID: 16088402. https://doi.org/10.1007/s00428-005-0039-7

    Article  PubMed  Google Scholar 

  27. Adsay NV. Cystic lesions of the pancreas. Mod Pathol. 2007;20:71–93.

    Article  Google Scholar 

  28. Adsay NV, Kloppel G, Fukushima N, et al. Intraductal neoplasms of the pancreas. In: Bosman FT, Carneiro F, Hruban RH, et al., editors. WHO classification of tumors of the digestive system. Lyon: WHO Press; 2010.

    Google Scholar 

  29. Adsay V, Mino-Kenudson M, Furukawa T, et al. Pathologic evaluation and reporting of intraductal papillary mucinous neoplasms of the pancreas and other tumoral intraepithelial neoplasms of pancreatobiliary tract: recommendations of verona consensus meeting. Ann Surg. 2016;263:162–77.

    Article  PubMed  Google Scholar 

  30. Tanaka M, Fernandez-del Castillo C, Adsay V, et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology. 2012;12:183–97.

    Article  PubMed  Google Scholar 

  31. Adsay NV, Longnecker DS, Klimstra DS. Pancreatic tumors with cystic dilatation of the ducts: intraductal papillary mucinous neoplasms and intraductal oncocytic papillary neoplasms. Semin Diagn Pathol. 2000;17:16–30.

    CAS  PubMed  Google Scholar 

  32. Adsay NV, Conlon KC, Zee SY, et al. Intraductal papillary-mucinous neoplasms of the pancreas: an analysis of in situ and invasive carcinomas in 28 patients. Cancer. 2002;94:62–77.

    Article  PubMed  Google Scholar 

  33. Adsay NV. The “new kid on the block”: intraductal papillary mucinous neoplasms of the pancreas: current concepts and controversies. Surgery. 2003;133:459–63.

    Article  PubMed  Google Scholar 

  34. Adsay NV, Merati K, Basturk O, et al. Pathologically and biologically distinct types of epithelium in intraductal papillary mucinous neoplasms: delineation of an “intestinal” pathway of carcinogenesis in the pancreas. Am J Surg Pathol. 2004;28:839–48.

    Article  PubMed  Google Scholar 

  35. Adsay NV, Adair CF, Heffess CS, et al. Intraductal oncocytic papillary neoplasms of the pancreas. Am J Surg Pathol. 1996;20:980–94.

    Article  CAS  PubMed  Google Scholar 

  36. Reid MD, Saka B, Balci S, et al. Molecular genetics of pancreatic neoplasms and their morphologic correlates: an update on recent advances and potential diagnostic applications. Am J Clin Pathol. 2014;141:168–80.

    Article  CAS  PubMed  Google Scholar 

  37. Chari ST, Yadav D, Smyrk TC, et al. Study of recurrence after surgical resection of intraductal papillary mucinous neoplasm of the pancreas. Gastroenterology. 2002;123:1500–7.

    Article  PubMed  Google Scholar 

  38. Sohn TA, Yeo CJ, Cameron JL, et al. Intraductal papillary mucinous neoplasms of the pancreas: an updated experience. Ann Surg. 2004;239:788–97. discussion 797–9

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tanaka M, Chari S, Adsay V, et al. International consensus guidelines for management of intraductal papillary mucinous neoplasms and mucinous cystic neoplasms of the pancreas. Pancreatology. 2006;6:17–32.

    Article  PubMed  Google Scholar 

  40. Furukawa T, Kloppel G, Volkan Adsay N, et al. Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Arch. 2005;447:794–9.

    Article  PubMed  Google Scholar 

  41. Furukawa T, Kuboki Y, Tanji E, et al. Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep. 2011;1:161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wu J, Jiao Y, Dal Molin M, et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci U S A. 2011;108:21188–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Klimstra DS, Adsay NV, Dhall D, et al. Intraductal tubular carcinoma of the pancreas: clinicopathologic and immunohistochemical analysis of 18 cases. Mod Pathol. 2007;20:285A.

    Article  Google Scholar 

  44. Tajiri T, Tate G, Kunimura T, et al. Histologic and immunohistochemical comparison of intraductal tubular carcinoma, intraductal papillary-mucinous carcinoma, and ductal adenocarcinoma of the pancreas. Pancreas. 2004;29:116–22.

    Article  PubMed  Google Scholar 

  45. Tajiri T, Tate G, Inagaki T, et al. Intraductal tubular neoplasms of the pancreas: histogenesis and differentiation. Pancreas. 2005;30:115–21.

    Article  PubMed  Google Scholar 

  46. Date K, Okabayashi T, Shima Y, et al. Clinicopathological features and surgical outcomes of intraductal tubulopapillary neoplasm of the pancreas: a systematic review. Langenbeck’s Arch Surg. 2016;401:439–47.

    Article  Google Scholar 

  47. Yamaguchi H, Kuboki Y, Hatori T, et al. The discrete nature and distinguishing molecular features of pancreatic intraductal tubulopapillary neoplasms and intraductal papillary mucinous neoplasms of the gastric type, pyloric gland variant. J Pathol. 2013;231:335–41.

    Article  CAS  PubMed  Google Scholar 

  48. Yamaguchi H, Shimizu M, Ban S, et al. Intraductal tubulopapillary neoplasms of the pancreas distinct from pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol. 2009;33:1164–72.

    Article  PubMed  Google Scholar 

  49. Bhanot U, Basturk O, Berger M, et al. Molecular characteristics of the pancreatic intraductal tubulopapillary neoplasm (abstract). Mod Pathol. 2015;28:1761A.

    Google Scholar 

  50. Wilentz RE, Albores-Saavedra J, Hruban RH. Mucinous cystic neoplasms of the pancreas. Semin Diagn Pathol. 2000;17:31–43.

    CAS  PubMed  Google Scholar 

  51. Thompson LDR, Becker RC, Pryzgodski RM, et al. Mucinous cystic neoplasm (mucinous cystadenocarcinoma of low malignant potential) of the pancreas: a clinicopathologic study of 130 cases. Am J Surg Pathol. 1999;23:1–16.

    Article  CAS  PubMed  Google Scholar 

  52. Zamboni G, Scarpa A, Bogina G, et al. Mucinous cystic tumors of the pancreas: clinicopathological features, prognosis, and relationship to other mucinous cystic tumors. Am J Surg Pathol. 1999;23:410–22.

    Article  CAS  PubMed  Google Scholar 

  53. Jang KT, Park SM, Basturk O, et al. Clinicopathologic characteristics of 29 invasive carcinomas arising in 178 pancreatic mucinous cystic neoplasms with ovarian-type stroma: implications for management and prognosis. Am J Surg Pathol. 2015;39:179–87.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Reid MD, Choi HJ, Memis B, et al. Serous neoplasms of the pancreas: a clinicopathologic analysis of 193 cases and literature review with new insights on macrocystic and solid variants and critical reappraisal of so-called “Serous Cystadenocarcinoma”. Am J Surg Pathol. 2015;39:1597–610.

    Article  PubMed  Google Scholar 

  55. Thirabanjasak, D, Basturk, O, Altinel, D, et al. Is serous cystadenoma of pancreas a model of clear cell associated angiogenesis and tumorigenesis? Pancreatology 2008; (in press).

    Google Scholar 

  56. Kosmahl M, Pauser U, Peters K, et al. Cystic neoplasms of the pancreas and tumor-like lesions with cystic features: a review of 418 cases and a classification proposal. Virchows Arch. 2004;445:168–78.

    Article  CAS  PubMed  Google Scholar 

  57. Tseng JF, Warshaw AL, Sahani DV, et al. Serous cystadenoma of the pancreas: tumor growth rates and recommendations for treatment. Ann Surg. 2005;242:413–9. discussion 419–21

    PubMed  PubMed Central  Google Scholar 

  58. Matsumoto T, Hirano S, Yada K, et al. Malignant serous cystic neoplasm of the pancreas: report of a case and review of the literature. J Clin Gastroenterol. 2005;39:253–6.

    Article  PubMed  Google Scholar 

  59. Strobel O, Z’Graggen K, Schmitz-Winnenthal FH, et al. Risk of malignancy in serous cystic neoplasms of the pancreas. Digestion. 2003;68:24–33.

    Article  PubMed  Google Scholar 

  60. Zhu H, Qin L, Zhong M, et al. Carcinoma ex microcystic adenoma of the pancreas: a report of a novel form of malignancy in serous neoplasms. Am J Surg Pathol. 2012;36:305–10.

    Article  PubMed  Google Scholar 

  61. Klimstra DS, Arnold R, Capella C, et al. Neuroendocrine neoplasms of the pancreas. In: Bosman FT, Carneiro F, Hruban RH, et al., editors. WHO classification of tumours of the digestive system. Lyon: WHO Press; 2010.

    Google Scholar 

  62. Basturk O, Yang Z, Tang LH, et al. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol. 2015;39:683–90.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sorbye H, Welin S, Langer SW, et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol. 2013;24:152–60.

    Article  CAS  PubMed  Google Scholar 

  64. Reid MD, Balci S, Saka B, et al. Neuroendocrine tumors of the pancreas: current concepts and controversies. Endocr Pathol. 2014;25:65–79.

    Article  CAS  PubMed  Google Scholar 

  65. Basturk O, Tang L, Hruban RH, et al. Poorly differentiated neuroendocrine carcinomas of the pancreas: a clinicopathologic analysis of 44 cases. Am J Surg Pathol. 2014;38:437–47.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Morohoshi T, Held G, Kloppel G. Exocrine pancreatic tumours and their histological classification. A study based on 167 autopsy and 97 surgical cases. Histopathology. 1983;7:645–61.

    Article  CAS  PubMed  Google Scholar 

  67. Basturk, O and Klimstra, D Poorly differentiated neuroendocrine carcinomas of the pancreas. In: La Rosa S, Sessa F, editors. Pancreatic neuroendocrine neoplasms: a practical approach to diagnosis, classification, and therapy. Switzerland: Springer; 2015.

    Chapter  Google Scholar 

  68. Shi C, Klimstra DS. Pancreatic neuroendocrine tumors: pathologic and molecular characteristics. Semin Diagn Pathol. 2014;31:498–511.

    Article  PubMed  Google Scholar 

  69. Yachida S, Vakiani E, White CM, et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol. 2012;36:173–84.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jiao Y, Shi C, Edil BH, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331:1199–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gupta A, Duque M, Saif MW. Treatment of poorly differentiated neuroendocrine carcinoma of the pancreas. JOP. 2013;14:381–3.

    PubMed  Google Scholar 

  72. Smith J, Reidy-Lagunes D. The management of extrapulmonary poorly differentiated (high-grade) neuroendocrine carcinomas. Semin Oncol. 2013;40:100–8.

    Article  PubMed  Google Scholar 

  73. Singhi AD, Norwood S, Liu TC, et al. Acinar cell cystadenoma of the pancreas: a benign neoplasm or non-neoplastic ballooning of acinar and ductal epithelium? Am J Surg Pathol. 2013;37:1329–35.

    Article  PubMed  Google Scholar 

  74. Klimstra DS, Heffess CS, Oertel JE, et al. Acinar cell carcinoma of the pancreas. A clinicopathologic study of 28 cases. Am J Surg Pathol. 1992;16:815–37.

    Article  CAS  PubMed  Google Scholar 

  75. La Rosa S, Adsay V, Albarello L, et al. Clinicopathologic study of 62 acinar cell carcinomas of the pancreas: insights into the morphology and immunophenotype and search for prognostic markers. Am J Surg Pathol. 2012;36:1782–95.

    Article  PubMed  Google Scholar 

  76. Basturk O, Zamboni G, Klimstra DS, et al. Intraductal and papillary variants of acinar cell carcinomas: a new addition to the challenging differential diagnosis of intraductal neoplasms. Am J Surg Pathol. 2007;31:363–70.

    Article  PubMed  Google Scholar 

  77. Toll AD, Mitchell D, Yeo CJ, et al. Acinar cell carcinoma with prominent intraductal growth pattern: case report and review of the literature. Int J Surg Pathol. 2011;19:795–9.

    Article  PubMed  Google Scholar 

  78. Wood LD, Klimstra DS. Pathology and genetics of pancreatic neoplasms with acinar differentiation. Semin Diagn Pathol. 2014;31:491–7.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Klimstra DS, Adsay V. Acinar neoplasms of the pancreas-A summary of 25 years of research. Semin Diagn Pathol. 2016;33:307–18.

    Article  PubMed  Google Scholar 

  80. Ohike N, Kosmahl M, Klöppel G. Mixed acinar-endocrine carcinoma of the pancreas. A clinicopathological study and comparison with acinar-cell carcinoma. Virchows Arch. 2004;445:231–5.

    Article  PubMed  Google Scholar 

  81. Moore PS, Orlandini S, Zamboni G, et al. Pancreatic tumours: molecular pathways implicated in ductal cancer are involved in ampullary but not in exocrine nonductal or endocrine tumorigenesis. Br J Cancer. 2001;84:253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Furlan D, Sahnane N, Bernasconi B, et al. APC alterations are frequently involved in the pathogenesis of acinar cell carcinoma of the pancreas, mainly through gene loss and promoter hypermethylation. Virchows Arch. 2014;464:553–64.

    Article  CAS  PubMed  Google Scholar 

  83. Jiao Y, Yonescu R, Offerhaus GJ, et al. Whole-exome sequencing of pancreatic neoplasms with acinar differentiation. J Pathol. 2014;232:428–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chmielecki J, Hutchinson KE, Frampton GM, et al. Comprehensive genomic profiling of pancreatic acinar cell carcinomas identifies recurrent RAF fusions and frequent inactivation of DNA repair genes. Cancer Discov. 2014;4:1398–405.

    Article  CAS  PubMed  Google Scholar 

  85. Wang L, Basturk O, Chmielecki J, et al. Development of BRAF FISH assay for the detection of BRAF gene rearrangements identified in pancreatic acinar cell carcinomas (abstract). Mod Pathol. 2015;28:1805A.

    Google Scholar 

  86. Vakiani E, Young RH, Carcangiu ML, et al. Acinar cell carcinoma of the pancreas metastatic to the ovary: a report of 4 cases. Am J Surg Pathol. 2008;32:1540–5.

    Article  PubMed  Google Scholar 

  87. Lowery MA, Klimstra DS, Shia J, et al. Acinar cell carcinoma of the pancreas: new genetic and treatment insights into a rare malignancy. Oncologist. 2011;16:1714–20.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Klimstra DS, Wenig BM, Adair CF, et al. Pancreatoblastoma. A clinicopathologic study and review of the literature. Am J Surg Pathol. 1995;19:1371–89.

    Article  CAS  PubMed  Google Scholar 

  89. Cingolani N, Shaco-Levy R, Farruggio A, et al. Alpha-fetoprotein production by pancreatic tumors exhibiting acinar cell differentiation: study of five cases, one arising in a mediastinal teratoma. Hum Pathol. 2000;31:938–44.

    Article  CAS  PubMed  Google Scholar 

  90. Sorrentino S, Conte M, Nozza P, et al. Simultaneous occurrence of pancreatoblastoma and neuroblastoma in a newborn with beckwith-wiedemann syndrome. J Pediatr Hematol Oncol. 2010;32:e207–9.

    Article  PubMed  Google Scholar 

  91. Abraham SC, Wu TT, Klimstra DS, et al. Distinctive molecular genetic alterations in sporadic and familial adenomatous polyposis-associated pancreatoblastomas: frequent alterations in the APC/beta-catenin pathway and chromosome 11p. Am J Pathol. 2001;159:1619–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bien E, Godzinski J, Dall’igna P, et al. Pancreatoblastoma: a report from the European cooperative study group for paediatric rare tumours (EXPeRT). Eur J Cancer. 2011;47:2347–52.

    Article  PubMed  Google Scholar 

  93. Tanaka Y, Kato K, Notohara K, et al. Significance of aberrant (cytoplasmic/nuclear) expression of beta-catenin in pancreatoblastoma. J Pathol. 2003;199:185–90.

    Article  CAS  PubMed  Google Scholar 

  94. Salman B, Brat G, Yoon YS, et al. The diagnosis and surgical treatment of pancreatoblastoma in adults: a case series and review of the literature. J Gastrointest Surg. 2013;17:2153–61.

    Article  PubMed  Google Scholar 

  95. Reid, DM, Akkas, G, Basturk, O, et al., Mixed adenoneuroendocrine carcinoma of the pancreas. In: La Rosa S, Sessa F, editors. Pancreatic neuroendocrine neoplasms: a practical approach to diagnosis, classification, and therapy. Switzerland: Springer; 2015.

    Chapter  Google Scholar 

  96. Basturk O, Coban I, Adsay NV. Pancreatic cysts: pathologic classification, differential diagnosis, and clinical implications. Arch Pathol Lab Med. 2009;133:423–38.

    PubMed  Google Scholar 

  97. Estrella JS, Li L, Rashid A, et al. Solid pseudopapillary neoplasm of the pancreas: clinicopathologic and survival analyses of 64 cases from a single institution. Am J Surg Pathol. 2014;38:147–57.

    Article  PubMed  Google Scholar 

  98. Klimstra DS, Wenig BM, Heffess CS. Solid-pseudopapillary tumor of the pancreas: a typically cystic tumor of low malignant potential. Semin Diagn Pathol. 2000;17:66–81.

    CAS  PubMed  Google Scholar 

  99. Terris B, Cavard C. Diagnosis and molecular aspects of solid-pseudopapillary neoplasms of the pancreas. Semin Diagn Pathol. 2014;31:484–90.

    Article  PubMed  Google Scholar 

  100. Chetty R, Jain D, Serra S. p120 catenin reduction and cytoplasmic relocalization leads to dysregulation of E-cadherin in solid pseudopapillary tumors of the pancreas. Am J Clin Pathol. 2008;130:71–6.

    Article  PubMed  Google Scholar 

  101. Tang LH, Aydin H, Brennan MF, et al. Clinically aggressive solid pseudopapillary tumors of the pancreas: a report of two cases with components of undifferentiated carcinoma and a comparative clinicopathologic analysis of 34 conventional cases. Am J Surg Pathol. 2005;29:512–9.

    Article  PubMed  Google Scholar 

  102. Kang CM, Choi SH, Kim SC, et al. Predicting recurrence of pancreatic solid pseudopapillary tumors after surgical resection: a multicenter analysis in Korea. Ann Surg. 2014;260:348–55.

    Article  PubMed  Google Scholar 

  103. Law JK, Ahmed A, Singh VK, et al. A systematic review of solid-pseudopapillary neoplasms: are these rare lesions? Pancreas. 2014;43:331–7.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Adsay NV, Hasteh F, Cheng JD, et al. Lymphoepithelial cysts of the pancreas: a report of 12 cases and a review of the literature. Mod Pathol. 2002;15:492–501.

    Article  PubMed  Google Scholar 

  105. Adsay NV, Hasteh F, Cheng JD, et al. Squamous-lined cysts of the pancreas: lymphoepithelial cysts, dermoid cysts (teratomas) and accessory-splenic epidermoid cysts. Semin Diagn Pathol. 2000;17:56–66.

    CAS  PubMed  Google Scholar 

  106. Paal E, Thompson LD, Heffess CS. A clinicopathologic and immunohistochemical study of ten pancreatic lymphangiomas and a review of the literature [published erratum appears in Cancer 1998 Aug 15;83(4):824]. Cancer. 1998;82:2150–8.

    Article  CAS  PubMed  Google Scholar 

  107. Othman M, Basturk O, Groisman G, et al. Squamoid cyst of pancreatic ducts: a distinct type of cystic lesion in the pancreas. Am J Surg Pathol. 2007;31:291–7.

    Article  PubMed  Google Scholar 

  108. Bismar TA, Basturk O, Gerald WL, et al. Desmoplastic small cell tumor in the pancreas. Am J Surg Pathol. 2004;28:808–12.

    Article  PubMed  Google Scholar 

  109. Adsay NV, Basturk O, Klimstra DS, et al. Pancreatic pseudotumors: non-neoplastic solid lesions of the pancreas that clinically mimic pancreas cancer. Semin Diagn Pathol. 2004;21:260–7.

    Article  PubMed  Google Scholar 

  110. Zamboni G, Lüttges J, Capelli P, et al. Histopathological features of diagnostic and clinical relevance in autoimmune pancreatitis: a study on 53 resection specimens and 9 biopsy specimens. Virchows Arch. 2004;445:552–63.

    Article  PubMed  Google Scholar 

  111. Klimstra DS, Adsay NV. Lymphoplasmacytic sclerosing (autoimmune) pancreatitis. Semin Diagn Pathol. 2004;21:237–46.

    Article  PubMed  Google Scholar 

  112. Sah RP, Chari ST. Serologic issues in IgG4-related systemic disease and autoimmune pancreatitis. Curr Opin Rheumatol. 2011;23:108–13.

    Article  CAS  PubMed  Google Scholar 

  113. Chari ST. Diagnosis of autoimmune pancreatitis using its five cardinal features: introducing the Mayo Clinic’s HISORt criteria. J Gastroenterol. 2007;42(Suppl 18):39–41.

    Article  PubMed  Google Scholar 

  114. Chari ST, Smyrk TC, Levy MJ, et al. Diagnosis of autoimmune pancreatitis: the Mayo Clinic experience. Clin Gastroenterol Hepatol. 2006;4:1010–6. quiz 934

    Article  PubMed  Google Scholar 

  115. Deshpande V, Gupta R, Sainani N, et al. Subclassification of autoimmune pancreatitis: a histologic classification with clinical significance. Am J Surg Pathol. 2011;35:26–35.

    Article  PubMed  Google Scholar 

  116. Shimosegawa T, Chari ST, Frulloni L, et al. International consensus diagnostic criteria for autoimmune pancreatitis: guidelines of the International Association of Pancreatology. Pancreas. 2011;40:352–8.

    Article  PubMed  Google Scholar 

  117. Zhang L, Chari S, Smyrk TC, et al. Autoimmune pancreatitis (AIP) type 1 and type 2: an international consensus study on histopathologic diagnostic criteria. Pancreas. 2011;40:1172–9.

    Article  CAS  PubMed  Google Scholar 

  118. Kloppel G, Detlefsen S, Chari ST, et al. Autoimmune pancreatitis: the clinicopathological characteristics of the subtype with granulocytic epithelial lesions. J Gastroenterol. 2010;45:787–93.

    Article  PubMed  CAS  Google Scholar 

  119. Hart PA, Kamisawa T, Brugge WR, et al. Long-term outcomes of autoimmune pancreatitis: a multicentre, international analysis. Gut. 2013;62:1771–6.

    Article  PubMed  Google Scholar 

  120. Detlefsen S, Zamboni G, Frulloni L, et al. Clinical features and relapse rates after surgery in type 1 autoimmune pancreatitis differ from type 2: a study of 114 surgically treated European patients. Pancreatology. 2012;12:276–83.

    Article  PubMed  Google Scholar 

  121. Kalb B, Martin DR, Sarmiento JM, et al. Paraduodenal pancreatitis: clinical performance of MR imaging in distinguishing from carcinoma. Radiology. 2013;269:475–81.

    Article  PubMed  Google Scholar 

  122. Altinel D, Basturk O, Sarmiento JM, et al. Lipomatous pseudohypertrophy of the pancreas: a clinicopathologically distinct entity. Pancreas. 2010;39:392–7.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Adsay NV, Andea A, Basturk O, et al. Secondary tumors of the pancreas: an analysis of a surgical and autopsy database and review of the literature. Virchows Arch. 2004;444:527–35.

    Article  PubMed  Google Scholar 

  124. Klimstra DS, Adsay NV. Benign and malignant tumors of the pancreas. In: Odze RD, Goldblum JR, Crawford JM, editors. Surgical pathology of the GI tract, liver, biliary tract and pancreas. Philadelphia: Saunders; 2004. p. 699–731.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Volkan Adsay .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Basturk, O., Reid, M.D., Adsay, N.V. (2018). Pathologic Classification and Biological Behavior of Pancreatic Neoplasia. In: Neoptolemos, J., Urrutia, R., Abbruzzese, J., Büchler, M. (eds) Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7193-0_3

Download citation

Publish with us

Policies and ethics