Skip to main content

Crater Rim

  • Living reference work entry
  • First Online:
  • 220 Accesses

Definition

The crater rim is the edge of the crater typically elevated above the original ground surface. The maximum elevation of the rim is the rim crest.

Synonyms

Basin rim (for basins), Rampart (Elger 1895, obsolete), Ring mountain (obsolete)

Related Term

Rimless crater, rim crest

Description

The crater rim consists of autochthonous, structurally elevated bedrock (Poelchau et al. 2009) overlaid by a thick layer of overturned allochthonous (displaced) ejecta (impact) (Fig. 1).

Fig. 1
figure 1

Cross section of crater rim (Watters 2010). (h r ) Rim height, (h u ) stratigraphic uplift (Melosh 1989)

This is a preview of subscription content, log in via an institution.

References

  • Beer W, Mädler JH (1838) Physische Beobachtungen des Mars in der Opposition von 1837 Von den Herren W. Beer und Dr. Madler. Astron Nachrichten 15:219. http://adsabs.harvard.edu/abs/1838AN.....15..219B, Provided by the SAO/NASA Astrophysics Data System

  • Bray VJ, Schenk PM, Melosh HJ, Morgan JV, Collins GS (2012) Ganymede crater dimensions – implications for peak and pit formation and development. Icarus 217:115–129

    Article  Google Scholar 

  • Cintala MJ, Head JW, Veverka J (1978) Characteristics of the cratering process on small satellites and asteroids. Lunar Planet Sci Conf 9th, A79-39253 16-91, 3803–3830, Houston

    Google Scholar 

  • Collins G (2002) Numerical modelling of large impact crater collapse. PhD thesis, University of London

    Google Scholar 

  • Collins GS, Melosh HJ, Marcus RA (2005) Earth impact effects program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit Planet Sci 40(6):817–840

    Article  Google Scholar 

  • Craddock RA, Maxwell TA, Howard AD (1997) Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars. J Geophys Res 102(E6):13321–13340

    Article  Google Scholar 

  • Elger TG (1895) The Moon – a full description and map of its principal physical features. George Philip & Son, London

    Google Scholar 

  • French BM (1998) Traces of catastrophe: a handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI Contribution No. 954, Lunar and Planetary Institute, Houston. 120 pp

    Google Scholar 

  • Glass BP, Simonson BM (2013) Distal impact ejecta layers. A record of large impacts in sedimentary deposits. Springer, Heidelberg

    Book  Google Scholar 

  • Grant JA, Schultz PH (1993) Degradation of selected terrestrial and martian impact craters. J Geophys Res 98(E6):11,025–11,042

    Article  Google Scholar 

  • Grant JA, Wilson SA, Cohen BA, Golombek MP, Geissler PE, Sullivan RJ, Kirk RL, Parker TJ (2008) Degradation of Victoria crater, Mars. J Geophys Res 113:E11010. doi:10.1029/2008JE003155

    Article  Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geological process, Oxford monographs on geology and geophysics, 11. Oxford University Press, New York

    Google Scholar 

  • Ormö J, Lepinette A, Sturkell E, Lindström M, Housen KR, Holsappe KA (2010) Water resurge at marine-target impact craters analyzed with a combination of low-velocity impact experiments and numerical simulations. GSA Spec Pap 465:81–101. doi:10.1130/2010.2465(06)

    Google Scholar 

  • Poelchau MH, Kenkmann T, Kring DA (2009) Rim uplift and crater shape in Meteor Crater: effects of target heterogeneities and trajectory obliquity. J Geophys Res 114:E01006. doi:10.1029/2008JE003235

    Google Scholar 

  • Robbins SJ, Hynek BM (2012) A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters. J Geophys Res Planet 117:E05004. doi:10.1029/2011JE003966

    Google Scholar 

  • Roddy DJ, Boyce JM, Colton GW, Dial AL Jr (1975) Meteor Crater, Arizona, rim drilling with thickness, structural uplift, diameter, depth, volume, and mass-balance calculations. Lunar Planet Sci Conf VI:2621–2644, Houston

    Google Scholar 

  • Schenk PM (1991) Ganymede and Callisto: complex crater formation and planetary crusts. J Geophys Res 96:15635–15664

    Article  Google Scholar 

  • Schon SC, Head JW (2012) Gasa impact crater, Mars: very young gullies formed from impact into latitude-dependent mantle and debris-covered glacier deposits? Icarus 218:459–477. doi: 10.1016/j.icarus.2012.01.002. http://adsabs.harvard.edu/abs/2012Icar..218..459S, Provided by the SAO/NASA Astrophysics Data System

  • Schröter JH (1791) Selenotopographische fragmente. CG Fleckeinsen, Lilenthal

    Google Scholar 

  • Shoemaker EM (1960) Penetration mechanics of high velocity meteorites, illustrated by Meteor Crater, Arizona: International Geological Congress, 21st, Copenhagen, Report, pt. 18, pp 418–434, 1960

    Google Scholar 

  • Singer KN, McKinnon WB, Schenk PM, Moore JM (2012) Massive ice avalanches on Iapetus mobilized by friction reduction during flash heating. Nat Geosci 5:574–578

    Article  Google Scholar 

  • Stepinski TF, Mendenhall MP, Bue BD (2009) Machine cataloging of impact craters on Mars. Icarus 203:77–87. doi:10.1016/ j.icarus.2009.04.026

    Article  Google Scholar 

  • Stöffler D, Ryder G, Ivanov BA, Artemieva NA, Cintala MJ, Grieve RAF (2006) Cratering history and lunar chronology. Rev Mineral Geochem 60:519–596

    Article  Google Scholar 

  • Watters WA (2010) The concave planform of transient impact craters in fractured targets. 41st Lunar Planet Sci Conf, abstract #2684, Houston

    Google Scholar 

  • Wieczorek MA, Phillips RJ (1999) Lunar multiring basins and the cratering process. Icarus 139:246–259

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Robbins .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Robbins, S., Bray, V.J., Hargitai, H. (2014). Crater Rim. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_78-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_78-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics