Skip to main content

Clinically Relevant Drug Interactions for Malaria

  • Living reference work entry
  • First Online:
Encyclopedia of Malaria
  • 206 Accesses

Introduction

Interactions between different substances and molecules in the human body have occurred for as long as humans have existed. Usually this is not something that we notice. However, with the increased use of pharmaceutical drugs, drug-drug interactions have become increasingly more important since it has the potential to make drugs ineffective or toxic. Less effective drugs can lead to a delayed, decreased, or absent pharmaceutical effect and therefore not yield the promised treatment for the disease and/or symptom. Reduced effect can also result in increased risk of resistance development in anti-infective treatments. Drug toxicity can result in adverse events (i.e., side effects) and in some cases even death.

Malaria is a life-threatening disease that may result in death if left untreated, and a degree of drug-drug interactions might therefore be a necessary risk. Thus, it is important to consider drug-drug interactions, given the many drugs that are potentially...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Achan J, Kakuru A, Ikilezi G, Ruel T, Clark TD, Nsanzabana C, et al. Antiretroviral agents and prevention of malaria in HIV-infected Ugandan children. N Engl J Med. 2012;367(22):2110–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almond LM, Edirisinghe D, Dalton M, Bonington A, Back DJ, Khoo SH. Intracellular and plasma pharmacokinetics of nevirapine in human immunodeficiency virus-infected individuals. Clin Pharmacol Ther. 2005;78(2):132–42.

    Article  CAS  PubMed  Google Scholar 

  • Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371(5):411–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bancone G, Chowwiwat N, Somsakchaicharoen R, Poodpanya L, Moo PK, Gornsawun G, et al. Single low dose primaquine (0.25mg/kg) does not cause clinically significant haemolysis in G6PD deficient subjects. Gutman J, editor. PLoS One. 2016;11(3):e0151898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brandon EFA, Raap CD, Meijerman I, Beijnen JH, Schellens JHM. An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol. 2003;189(3):233–46.

    Article  CAS  PubMed  Google Scholar 

  • Burhenne J, Matthée A-K, Pasáková I, Röder C, Heinrich T, Haefeli WE, et al. No evidence for induction of ABC transporters in peripheral blood mononuclear cells in humans after 14 days of efavirenz treatment. Antimicrob Agents Chemother. 2010;54(10):4185–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byakika-Kibwika P, Lamorde M, Mayito J, Nabukeera L, Namakula R, Mayanja-Kizza H, et al. Significant pharmacokinetic interactions between artemether/lumefantrine and efavirenz or nevirapine in HIV-infected Ugandan adults. J Antimicrob Chemother. 2012;67(9):2213–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centers for Disease Control and Prevention. Treatment for TB Disease | Treatment | TB | [Internet]. 2018 [cited 2018 Sep 6]. Available from: https://www.cdc.gov/tb/topic/treatment/tbdisease.htm

  • Chairat K, Jittamala P, Hanboonkunupakarn B, Pukrittayakamee S, Hanpithakpong W, Blessborn D, et al. Enantiospecific pharmacokinetics and drug–drug interactions of primaquine and blood-stage antimalarial drugs. J Antimicrob Chemother. 2018;73:3102–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandler B, Almond L, Ford J, Owen A, Hoggard P, Khoo S, et al. The effects of protease inhibitors and nonnucleoside reverse transcriptase inhibitors on p-glycoprotein expression in peripheral blood mononuclear cells in vitro. J Acquir Immune Defic Syndr. 2003;33(5):551–6.

    Article  CAS  PubMed  Google Scholar 

  • Chotsiri P, Wattanakul T, Hoglund RM, Hanboonkunupakarn B, Pukrittayakamee S, Blessborn D, et al. Population pharmacokinetics and electrocardiographic effects of dihydroartemisinin-piperaquine in healthy volunteers. Br J Clin Pharmacol. 2017;83(12):2752–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft SL, Duparc S, Arbe-Barnes SJ, Craft JC, Shin C-S, Fleckenstein L, et al. Review of pyronaridine antimalarial properties and product characteristics. Malar J. 2012;11(1):270.

    Article  PubMed  PubMed Central  Google Scholar 

  • European Medicines Agency. Assessment report Eurartesim. 2011.

    Google Scholar 

  • Fellay J, Marzolini C, Decosterd L, Golay KP, Baumann P, Buclin T, et al. Variations of CYP3A activity induced by antiretroviral treatment in HIV-1 infected patients. Eur J Clin Pharmacol. 2005;60(12):865–73.

    Article  CAS  PubMed  Google Scholar 

  • Finch CK, Chrisman CR, Baciewicz AM, Self TH. Rifampin and rifabutin drug interactions: an update. Arch Intern Med. 2002;162(9):985–92.

    Article  CAS  PubMed  Google Scholar 

  • Fontaine F, de Sousa G, Burcham PC, Duchêne P, Rahmani R. Role of cytochrome P450 3A in the metabolism of mefloquine in human and animal hepatocytes. Life Sci. 2000;66(22):2193–212.

    Article  CAS  PubMed  Google Scholar 

  • German P, Greenhouse B, Coates C, Dorsey G, Rosenthal PJ, Charlebois E, et al. Hepatotoxicity due to a drug interaction between amodiaquine plus artesunate and efavirenz. Clin Infect Dis. 2007;44(6):889–91.

    Article  PubMed  Google Scholar 

  • Greiner B, Eichelbaum M, Fritz P, Kreichgauer H-P, von Richter O, Zundler J, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest. 1999;104(2):147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanboonkunupakarn B, Ashley EA, Jittamala P, Tarning J, Pukrittayakamee S, Hanpithakpong W, et al. Open-label crossover study of primaquine and dihydroartemisinin-piperaquine pharmacokinetics in healthy adult thai subjects. Antimicrob Agents Chemother. 2014;58(12):7340–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoglund RM, Byakika-Kibwika P, Lamorde M, Merry C, Ashton M, Hanpithakpong W, et al. Artemether-lumefantrine coadministration with antiretrovirals; population pharmacokinetics and dosing implications. Br J Clin Pharmacol. 2014;79:636–49.

    Article  PubMed Central  CAS  Google Scholar 

  • Huang L, Parikh S, Rosenthal PJ, Lizak P, Marzan F, Dorsey G, et al. Concomitant efavirenz reduces pharmacokinetic exposure to the antimalarial drug artemether-lumefantrine in healthy volunteers. J Acquir Immune Defic Syndr. 2012;61(3):310–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Carey V, Lindsey JC, Marzan F, Gingrich D, Graham B, et al. Concomitant nevirapine impacts pharmacokinetic exposure to the antimalarial artemether-lumefantrine in African children. Pett SL, editor. PLoS One. 2017;12(10):e0186589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jittamala P, Pukrittayakamee S, Ashley EA, Nosten F, Hanboonkunupakarn B, Lee SJ, et al. Pharmacokinetic interactions between primaquine and pyronaridine-artesunate in healthy adult thai subjects. Antimicrob Agents Chemother. 2015;59(1):505–13.

    Article  PubMed  CAS  Google Scholar 

  • Kajubi R, Huang L, Were M, Kiconco S, Li F, Marzan F, et al. Parasite clearance and artemether pharmacokinetics parameters over the course of artemether-lumefantrine treatment for malaria in human immunodeficiency virus (HIV)-infected and HIV-uninfected ugandan children. Open Forum Infect Dis. 2016;3(4):ofw217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kajubi R, Huang L, Jagannathan P, Chamankhah N, Were M, Ruel T, et al. Antiretroviral therapy with efavirenz accentuates pregnancy-associated reduction of dihydroartemisinin-piperaquine exposure during malaria chemoprevention. Clin Pharmacol Ther. 2017;102(3):520–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoo S, Back D, Winstanley P. The potential for interactions between antimalarial and antiretroviral drugs. AIDS. 2005;19(10):995–1005.

    Article  PubMed  Google Scholar 

  • Kim K-A, Park J-Y, Lee J-S, Lim S. Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharm Res. 2003;26(8):631–7.

    Article  CAS  PubMed  Google Scholar 

  • Kobylinski KC, Ubalee R, Ponlawat A, Nitatsukprasert C, Phasomkulsolsil S, Wattanakul T, et al. Ivermectin susceptibility and sporontocidal effect in greater mekong subregion anopheles. Malar J. 2017;16(1):280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kredo T, Mauff K, Van der Walt JS, Wiesner L, Maartens G, Cohen K, et al. Interaction between artemether-lumefantrine and nevirapine-based antiretroviral therapy in HIV-1-infected patients. Antimicrob Agents Chemother. 2011;55(12):5616–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kredo T, Mauff K, Workman L, Van der Walt JS, Wiesner L, Smith PJ, et al. The interaction between artemether-lumefantrine and lopinavir/ritonavir-based antiretroviral therapy in HIV-1 infected patients. BMC Infect Dis. 2016;16(1):30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamorde M, Byakika-Kibwika P, Mayito J, Nabukeera L, Ryan M, Hanpithakpong W, et al. Lower artemether, dihydroartemisinin and lumefantrine concentrations during rifampicin-based tuberculosis treatment. AIDS. 2013;27(6):961–5.

    Article  CAS  PubMed  Google Scholar 

  • Lamson M, MacGregor T, Riska P, Erickson D, Maxfield P, Rowland L, et al. Nevirapine induces both CYP3A4 and CYP2B6 metabolic pathways. Clin Pharmacol Ther. Mosby, Inc. 1999;65(2):137.

    Article  Google Scholar 

  • Li X-Q, Björkman A, Andersson TB, Ridderström M, Masimirembwa CM. Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther. 2002;300(2):399–407.

    Article  CAS  PubMed  Google Scholar 

  • Maganda BA, Minzi OM, Kamuhabwa AA, Ngasala B, Sasi PG. Outcome of artemether-lumefantrine treatment for uncomplicated malaria in HIV-infected adult patients on anti-retroviral therapy. Malar J. 2014;13(1):205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A, et al. Official American thoracic society/centers for disease control and prevention/infectious diseases society of America clinical practice guidelines: treatment of drug-susceptible tuberculosis. 2016. Clinical Infectious Diseases, https://academic.oup.com/cid/article/63/7/e147/2196792?searchresult=1.

  • Natureeba P, Ades V, Luwedde F, Mwesigwa J, Plenty A, Okong P, et al. Lopinavir/ritonavir-based Antiretroviral Treatment (ART) versus efavirenz-based ART for the prevention of malaria among HIV- infected pregnant women. J Infect Dis. 2014;210(12):1938–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oswald S, Meyer zu Schwabedissen HE, Nassif A, Modess C, Desta Z, Ogburn ET, et al. Impact of efavirenz on intestinal metabolism and transport: insights from an interaction study with ezetimibe in healthy volunteers. Clin Pharmacol Ther. 2012;91(3):506–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parikh S, Fehintola F, Huang L, Olson A, Adedeji WA, Darin KM, et al. Artemether-lumefantrine exposure in HIV-infected nigerian subjects on nevirapine-containing antiretroviral therapy. Antimicrob Agents Chemother. 2015;59(12):7852–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parikh S, Kajubi R, Huang L, Ssebuliba J, Kiconco S, Gao Q, et al. Antiretroviral choice for HIV impacts antimalarial exposure and treatment outcomes in Ugandan children. Clin Infect Dis. 2016;63(3):414–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinilla YT, Lopes CPS, Sampaio SV, Andrade FS, Melo GC, Orfanó AS, et al. Promising approach to reducing Malaria transmission by ivermectin: sporontocidal effect against Plasmodium vivax in the South American vectors Anopheles aquasalis and Anopheles darlingi. Milon G, editor. PLoS Negl Trop Dis. 2018;12(2):e0006221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pukrittayakamee S, Viravan C, Charoenlarp P, Yeamput C, Wilson RJ, White NJ. Antimalarial effects of rifampin in Plasmodium vivax malaria. Antimicrob Agents Chemother. 1994;38(3):511–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pukrittayakamee S, Tarning J, Jittamala P, Charunwatthana P, Lawpoolsri S, Lee SJ, et al. Pharmacokinetic Interactions between Primaquine and Chloroquine. Antimicrob Agents Chemother. 2014;58(6):3354–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reinach B, de Sousa G, Dostert P, Ings R, Gugenheim J, Rahmani R. Comparative effects of rifabutin and rifampicin on cytochromes P450 and UDP-glucuronosyl-transferases expression in fresh and cryopreserved human hepatocytes. Chem Biol Interact. 1999;121(1):37–48.

    Article  CAS  PubMed  Google Scholar 

  • Robertson SM, Maldarelli F, Natarajan V, Formentini E, Alfaro RM, Penzak SR. Efavirenz induces CYP2B6- mediated hydroxylation of bupropion in healthy subjects. J Acquir Immune Defic Syndr. 2008;49(5):513–9.

    Article  CAS  PubMed  Google Scholar 

  • Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol. 1996;49(2):311–8.

    CAS  PubMed  Google Scholar 

  • Smit MR, Ochomo EO, Aljayyoussi G, Kwambai TK, Abong’o BO, Chen T, et al. Safety and mosquitocidal efficacy of high-dose ivermectin when co-administered with dihydroartemisinin-piperaquine in Kenyan adults with uncomplicated malaria (IVERMAL): a randomised, double-blind, placebo-controlled trial. Lancet Infect Dis Elsevier. 2018;18(6):615–26.

    Article  CAS  Google Scholar 

  • Soyinka JO, Onyeji CO. Alteration of pharmacokinetics of proguanil in healthy volunteers following concurrent administration of efavirenz. Eur J Pharm Sci. 2010;39(4):213–8.

    Article  CAS  PubMed  Google Scholar 

  • Soyinka JO, Onyeji CO, Omoruyi SI, Owolabi AR, Sarma PV, Cook JM. Effects of concurrent administration of nevirapine on the disposition of quinine in healthy volunteers. J Pharm Pharmacol. 2009;61(4):439–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Störmer E, von Moltke LL, Perloff MD, Greenblatt DJ. Differential modulation of P-glycoprotein expression and activity by non-nucleoside HIV-1 reverse transcriptase inhibitors in cell culture. Pharm Res. 2002;19(7):1038–45.

    Article  PubMed  Google Scholar 

  • Strath M, Scott-Finnigan T, Gardner M, Williamson D, Wilson I. Antimalarial activity of rifampicin in vitro and in rodent models. Trans R Soc Trop Med Hyg. 1993;87(2):211–6.

    Article  CAS  PubMed  Google Scholar 

  • Tchaparian E, Sambol NC, Arinaitwe E, McCormack SA, Bigira V, Wanzira H, et al. Population pharmacokinetics and pharmacodynamics of lumefantrine in young Ugandan children treated with artemether-lumefantrine for uncomplicated Malaria. J Infect Dis. 2016;214(8):1243–51. UNAIDS. UNAIDS data 2018. 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • UNAIDS | UNAIDS data 2018 | [Internet]. 2018 [cited 2018 Aug 22]. Available from: http://www.unaids.org/en/resources/documents/2018/unaids-data-2018.

  • Uthman OA, Graves PM, Saunders R, Gelband H, Richardson M, Garner P. Safety of primaquine given to people with G6PD deficiency: systematic review of prospective studies. Malar J. 2017;16(1):346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Geertruyden J-P. Interactions between malaria and human immunodeficiency virus anno 2014. Clin Microbiol Infect. 2014;20(4):278–85.

    Article  PubMed  Google Scholar 

  • WHO. Guidelines for the treatment of malaria. Geneva: World Health Organization; 2015.

    Google Scholar 

  • World Health Organization. Treatment of Tuberculosis. 2010.

    Google Scholar 

  • World Health Organization. TUBERCULOSIS REPORT 2017 GLOBAL. 2017.

    Google Scholar 

  • World Health Organization. World malaria report 2017. World Health Organization; 2018.

    Google Scholar 

  • Yeh RF, Gaver VE, Patterson KB, Rezk NL, Baxter-Meheux F, Blake MJ, et al. Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr. 2006;42(1):52–60.

    CAS  PubMed  Google Scholar 

  • Zhang D, Chando TJ, Everett DW, Patten CJ, Dehal SS, Humphreys WG. In vitro inhibition of UDP glucuronosyltransferases by atazanavir and other HIV protease inhibitors and the relationship of this property to in vivo bilirubin glucuronidation. Drug Metab Dispos. 2005;33(11):1729–39.

    Article  CAS  PubMed  Google Scholar 

  • Zhao XJ, Yokoyama H, Chiba K, Wanwimolruk S, Ishizaki T. Identification of human cytochrome P450 isoforms involved in the 3-hydroxylation of quinine by human live microsomes and nine recombinant human cytochromes P450. J Pharmacol Exp Ther. 1996;279(3):1327–34.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Tarning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tarning, J., Hoglund, R.M. (2019). Clinically Relevant Drug Interactions for Malaria. In: Kremsner, P., Krishna, S. (eds) Encyclopedia of Malaria. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8757-9_133-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8757-9_133-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8757-9

  • Online ISBN: 978-1-4614-8757-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics