Skip to main content

Computational Models of Neural Retina

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Biophysical models; Computational models of retinal function; Retinal network models

Definition

Computational models of the neural retina are extremely useful in the understanding of normal and abnormal retinal responses to light. They can also be for investigating retinal responses to artificial stimuli such as electrical stimulation by a vision prosthesis. Depending on the aims, complexities, and physiological assumptions on which the model is based, computational models of the retina may be classified into six broad types: single-compartment, morphologically realistic, block-compartment, discrete-neuronal network, continuum, and empirical models of retinal function.

Introduction

The retina is an elaborate architecture of neurons interconnected through gap junctions and synapses. At the outer retina, an array of rod and cone photoreceptors converts the incident light to neural responses. These signals then pass through approximately ten types of cone and one type of rod...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbas SY, Hamade KC, Yang EJ, Nawy S, Smith RG, Pettit DL (2013) Directional summation in non-direction selective retinal ganglion cells. PLoS Comput Biol 9:e1002969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abramian M, Lovell NH, Morley JW, Suaning GJ, Dokos S (2011) Activation of retinal ganglion cells following epiretinal electrical stimulation with hexagonally arranged bipolar electrodes. J Neural Eng 8:035004

    Article  PubMed  Google Scholar 

  • Abramian M, Lovell NH, Habib A, Morley JW, Suaning GJ, Dokos S (2014) Quasi-monopolar electrical stimulation of the retina: a computational modelling study. J Neural Eng 11:025002

    Article  PubMed  Google Scholar 

  • Aidley DJ (1979) The physiology of excitable cells. Cambridge University Press, Cambridge

    Google Scholar 

  • Al Abed A, Lovell NH, Suaning GJ, Dokos S (2013) A continuum neuronal tissue model based on a two-compartmental representation of cells. Conf Proc IEEE Eng Med Biol Soc 2013:6543–6546

    Google Scholar 

  • Alqahtani A, Al Abed A, Guo TR, Lovell NH, Dokos S (2017) A Continuum model of electrical stimulation of multi-compartmental retinal ganglion cells. Conf Proc IEEE Eng Med Biol Soc 2017: 2716–2719

    Google Scholar 

  • Altman KW, Plonsey R (1990) Point-source nerve bundle stimulation – effects of fiber diameter and depth on simulated excitation. IEEE Trans Biomed Eng 37:688–698

    Article  CAS  PubMed  Google Scholar 

  • Aoyama T, Kamiyama Y, Usui S (2005) Simulation analysis of receptive-field size of retinal horizontal cells by ionic current model. Vis Neurosci 22:65–78

    Article  PubMed  Google Scholar 

  • Arguello E, Silva R, Huerta M, Castillo C (2013) New trends in computational modeling: a Neuroid-based retina model. Conf Proc IEEE Eng Med Biol Soc 2013:4561–4564

    CAS  Google Scholar 

  • Baccus SA, Olveczky BP, Manu M, Meister M (2008) A retinal circuit that computes object motion. J Neurosci 28:6807–6817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baden T, Berens P, Franke K, Roson MR, Bethge M, Euler T (2016) The functional diversity of retinal ganglion cells in the mouse. Nature 529:345–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barriga-Rivera A, Guo TR, Yang CY, Al Abed A, Dokos S, Lovell NH, Morley JW, Suaning GJ (2017) High-amplitude electrical stimulation can reduce elicited neuronal activity in visual prosthesis. Sci Rep 7:42682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baylor DA, Hodgkin AL, Lamb TD (1974) Reconstruction of the electrical responses of turtle cones to flashes and steps of light. J Physiol 242:759–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry MJ 2nd, Brivanlou IH, Jordan TA, Meister M (1999) Anticipation of moving stimuli by the retina. Nature 398:334–338

    Article  CAS  PubMed  Google Scholar 

  • Boinagrov D, Loudin J, Palanker D (2010) Strength-duration relationship for extracellular neural stimulation: numerical and analytical models. J Neurophysiol 104:2236–2248

    Article  PubMed  PubMed Central  Google Scholar 

  • Boinagrov D, Pangratz-Fuehrer S, Suh B, Mathieson K, Naik N, Palanker D (2012) Upper threshold of extracellular neural stimulation. J Neurophysiol 108:3233–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bomash I, Roudi Y, Nirenberg S (2013) A virtual retina for studying population coding. PLoS One 8:e53363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borg-Graham LJ (2001) The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell. Nat Neurosci 4:176–183

    Article  CAS  PubMed  Google Scholar 

  • Borst A, Flanagin VL, Sompolinsky H (2005) Adaptation without parameter change: dynamic gain control in motion detection. Proc Natl Acad Sci U S A 102:6172–6176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brindley GS (1956) The passive electrical properties of the frog’s retina, choroid and sclera for radial fields and currents. J Physiol 134:339–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai CF, Liang PJ, Zhang PM (2007) A simulation study on the encoding mechanism of retinal ganglion cell. Lect N Bioinformat 4689: 470–479

    Google Scholar 

  • Cao X, Sui XH, Lyu Q, Li LM, Chai XY (2015) Effects of different three-dimensional electrodes on epiretinal electrical stimulation by modeling analysis. J Neuroeng Rehabil 12:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Carras PL, Coleman PA, Miller RF (1992) Site of action potential initiation in amphibian retinal ganglion cells. J Neurophysiol 67:292–304

    Article  CAS  PubMed  Google Scholar 

  • Cho A, Ratliff C, Sampath A, Weiland J (2016) Changes in ganglion cell physiology during retinal degeneration influence excitability by prosthetic electrodes. J Neural Eng 13:025001

    Article  PubMed  PubMed Central  Google Scholar 

  • Chua J, Nivison-Smith L, Fletcher EL, Trenholm S, Awatramani GB, Kalloniatis M (2013) Early remodeling of Muller cells in the rd/rd mouse model of retinal dystrophy. J Comp Neurol 521:2439–2453

    Article  CAS  PubMed  Google Scholar 

  • Cottaris NP, Elfar SD, Iezzi R, Abrams GW (2005) How the retinal network reacts to epiretinal stimulation to form the prosthetic visual input to the cortex: computational modeling of a degenerated retina. Invest Ophthalmol Vis Sci 46:S74–S90

    Google Scholar 

  • Curlander JC, Marmarelis VZ (1987) A linear spatiotemporal model of the light-to-bipolar cell system and its response characteristics to moving bars. Biol Cybern 57:357–363

    Article  CAS  PubMed  Google Scholar 

  • Dokos S, Suaning GJ, Lovell NH (2005) A bidomain model of epiretinal stimulation. IEEE Trans Neural Syst Rehabil Eng 13:137–146

    Article  PubMed  Google Scholar 

  • Dreosti E, Esposti F, Baden T, Lagnado L (2011) In vivo evidence that retinal bipolar cells generate spikes modulated by light. Nat Neurosci 14:951–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enciso G, Rempe M, Dmitriev AV, Gavrikov KE, Terman D, Mangel SC (2010) A model of direction selectivity in the starburst amacrine cell network. J Comput Neurosci 28:567–578

    Article  PubMed  PubMed Central  Google Scholar 

  • Felsen G, Dan Y (2005) A natural approach to studying vision. Nat Neurosci 8:1643–1646

    Article  CAS  PubMed  Google Scholar 

  • Fohlmeister JF (2009) A nerve model of greatly increased energy-efficiency and encoding flexibility over the Hodgkin-Huxley model. Brain Res 1296:225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fohlmeister JF, Miller RF (1997a) Impulse encoding mechanisms of ganglion cells in the tiger salamander retina. J Neurophysiol 78:1935–1947

    Article  CAS  PubMed  Google Scholar 

  • Fohlmeister JF, Miller RF (1997b) Mechanisms by which cell geometry controls repetitive impulse firing in retinal ganglion cells. J Neurophysiol 78:1948–1964

    Article  CAS  PubMed  Google Scholar 

  • Fohlmeister JF, Coleman PA, Miller RF (1990) Modeling the repetitive firing of retinal ganglion cells. Brain Res 510:343–345

    Article  CAS  PubMed  Google Scholar 

  • Fohlmeister JF, Cohen ED, Newman EA (2010) Mechanisms and distribution of ion channels in retinal ganglion cells: using temperature as an independent variable. J Neurophysiol 103:1357–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freed MA (2000) Parallel cone bipolar pathways to a ganglion cell use different rates and amplitudes of quantal excitation. J Neurosci 20:3956–3963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freed M (2001) Parallel cone bipolar pathways to a ganglion cell use different rates and amplitudes of quantal excitations. Invest Ophthalmol Vis Sci 42:S519–S519

    Google Scholar 

  • Freed MA, Smith RG, Sterling P (1992) Computational model of the on-alpha ganglion-cell receptive-field based on bipolar cell circuitry. Proc Natl Acad Sci U S A 89:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman DK, Rizzo JF, Fried SI (2011) Encoding visual information in retinal ganglion cells with prosthetic stimulation. J Neural Eng 8:035005

    Article  PubMed  PubMed Central  Google Scholar 

  • Fried SI, Munch TA, Werblin FS (2002) Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420:411–414

    Article  CAS  PubMed  Google Scholar 

  • Gollisch T, Meister M (2010) Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65:150–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg RJ, Velte TJ, Humayun MS, Scarlatis GN, De Juan E, Jr. (1999) A computational model of electrical stimulation of the retinal ganglion cell. IEEE Trans Biomed Eng 46:505–514

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Tsai D, Suaning GJ, Lovell NH, Dokos S (2012) Modeling normal and rebound excitation in mammalian retinal ganglion cells. Conf Proc IEEE Eng Med Biol Soc 2012:5506–5509

    Google Scholar 

  • Guo T, Tsai D, Morley JW, Suaning GJ, Lovell NH, Dokos S (2013a) Cell-specific modeling of retinal ganglion cell electrical activity. Conf Proc IEEE Eng Med Biol Soc 2013:6539–6542

    Google Scholar 

  • Guo T, Tsai D, Morley JW, Suaning GJ, Lovell NH, Dokos S (2013b) Influence of cell morphology in a computational model of ON and OFF retinal ganglion cells. Conf Proc IEEE Eng Med Biol Soc 2013:4553–4556

    Google Scholar 

  • Guo T, Tsai D, Sovilj S, Morley JW, Suaning GJ, Lovell NH, Dokos S (2013c) Influence of active dendrites on firing patterns in a retinal ganglion cell model. Conf Proc IEEE Eng Med Biol Soc 2013:4557–4560

    Google Scholar 

  • Guo T, Yang CY, Tsai D, Muralidharan M, Suaning GJ, Morley JW, Dokos S, Lovell NH (2018) Closed-loop efficient searching of optimal electrical stimulation parameters for preferential excitation of retinal ganglion cells. Front Neurosci 12:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo T, Tsai D, Yang CY, Al Abed A, Twyford P, Fried SI (2019) Mediating retinal ganglion cell spike rates using high-frequency electrical stimulation. Front Neurosci 13:413

    Article  PubMed  PubMed Central  Google Scholar 

  • Halupka KJ, Shivdasani MN, Cloherty SL, Grayden DB, Wong YT, Burkitt AN, Meffin H (2017) Prediction of cortical responses to simultaneous electrical stimulation of the retina. J Neural Eng 14:016006

    Article  PubMed  Google Scholar 

  • Hamer RD, Nicholas SC, Tranchina D, Lamb TD, Jarvinen JLP (2005) Toward a unified model of vertebrate rod phototransduction. Vis Neurosci 22:417–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennig MH, Worgotter F (2007) Effects of fixational eye movements on retinal ganglion cell responses: a modelling study. Front Comput Neurosci 1. https://doi.org/10.3389/Neuro.10/002.2007

  • Hennig MH, Funke K, Worgotter F (2002) The influence of different retinal subcircuits on the nonlinearity of ganglion cell behavior. J Neurosci 22:8726–8738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriquez CS (1993) Simulating the electrical behavior of cardiac tissue using the Bidomain model. Crit Rev Biomed Eng 21:1–77

    CAS  PubMed  Google Scholar 

  • Herrmann R, Heflin SJ, Hammond T, Lee B, Wang J, Gainetdinov RR, Caron MG, Eggers ED, Frishman LJ, McCall MA, Arshavsky VY (2011) Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA. Neuron 72:101–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herz AVM, Gollisch T, Machens CK, Jaeger D (2006) Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314:80–85

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hood DC, Shady S, Birch DG (1993) Heterogeneity in retinal disease and the computational model of the human-rod response. J Opt Soc Am A 10:1624–1630

    Article  CAS  PubMed  Google Scholar 

  • Hosoya T, Baccus SA, Meister M (2005) Dynamic predictive coding by the retina. Nature 436:71–77

    Article  CAS  PubMed  Google Scholar 

  • Jackman SL, Babai N, Chambers JJ, Thoreson WB, Kramer RH (2011) A positive feedback synapse from retinal horizontal cells to cone photoreceptors. PLoS Biol 9:e1001057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeng J, Tang S, Molnar A, Desai NJ, Fried SI (2011) The sodium channel band shapes the response to electric stimulation in retinal ganglion cells. J Neural Eng 8:036022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joarder SA, Abramian M, Suaning GJ, Lovell NH, Dokos S (2011) A continuum model of retinal electrical stimulation. J Neural Eng 8:066006

    Article  PubMed  Google Scholar 

  • Jones BW, Marc RE (2005) Retinal remodeling during retinal degeneration. Exp Eye Res 81:123–137

    Article  CAS  PubMed  Google Scholar 

  • Juusola M, Weckstrom M, Uusitalo RO, Korenberg MJ, French AS (1995) Nonlinear models of the first synapse in the light-adapted fly retina. J Neurophysiol 74:2538–2547

    Article  CAS  PubMed  Google Scholar 

  • Kalloniatis M, Nivison-Smith L, Chua J, Acosta ML, Fletcher EL (2016) Using the rd1 mouse to understand functional and anatomical retinal remodelling and treatment implications in retinitis pigmentosa: a review. Exp Eye Res 150:106–121

    Article  CAS  PubMed  Google Scholar 

  • Kameneva T, Meffin H, Burkitt AN (2011) Modelling intrinsic electrophysiological properties of ON and OFF retinal ganglion cells. J Comput Neurosci 31:547–561

    Article  PubMed  Google Scholar 

  • Kameneva T, Maturana MI, Hadjinicolaou AE, Cloherty SL, Ibbotson MR, Grayden DB, Burkitt AN, Meffin H (2016) Retinal ganglion cells: mechanisms underlying depolarization block and differential responses to high frequency electrical stimulation of ON and OFF cells. J Neural Eng 13:016017

    Article  CAS  PubMed  Google Scholar 

  • Kamiyama Y, Ogura T, Usui S (1996) Ionic current model of the vertebrate rod photoreceptor. Vis Res 36:4059–4068

    Article  CAS  PubMed  Google Scholar 

  • Keat J, Reinagel P, Reid RC, Meister M (2001) Predicting every spike: a model for the responses of visual neurons. Neuron 30:803–817

    Article  CAS  PubMed  Google Scholar 

  • Klaassen LJ, Sun ZY, Steijaert MN, Bolte P, Fahrenfort I, Sjoerdsma T, Klooster J, Claassen Y, Shields CR, Ten Eikelder HMM, Janssen-Bienhold U, Zoidl G, McMahon DG, Kamermans M (2011) Synaptic transmission from horizontal cells to cones is impaired by loss of connexin hemichannels. PLoS Biol 9:e1001107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kourennyi DE, Liu XD, Hart J, Mahmud F, Baldridge WH, Barnes S (2004) Reciprocal modulation of calcium dynamics at rod and cone photoreceptor synapses by nitric oxide. J Neurophysiol 92:477–483

    Article  CAS  PubMed  Google Scholar 

  • Lamb TD, Pugh EN Jr (1992) A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol 449:719–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Ishida AT (2007) Ih without Kir in adult rat retinal ganglion cells. J Neurophysiol 97:3790–3799

    Article  CAS  PubMed  Google Scholar 

  • Loizos K, Lazzi G, Lauritzen JS, Anderson J, Jones BW, Marc R (2014) A multi-scale computational model for the study of retinal prosthetic stimulation. Conf Proc IEEE Eng Med Biol Soc 2014:6100–6103

    Google Scholar 

  • Loizos K, Ramrakhyani AK, Anderson J, Marc R, Lazzi G (2016) On the computation of a retina resistivity profile for applications in multi-scale modeling of electrical stimulation and absorption. Phys Med Biol 61:4491–4505

    Article  PubMed  PubMed Central  Google Scholar 

  • Loizos K, Marc R, Humayun M, Anderson JR, Jones BW, Lazzi G (2018) Increasing electrical stimulation efficacy in degenerated retina: stimulus waveform design in a multiscale computational model. IEEE Trans Neural Syst Rehabil Eng 26:1111–1120

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo YH, Da Cruz L (2014) A review and update on the current status of retinal prostheses (bionic eye). Br Med Bull 109:31–44

    Article  PubMed  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366

    Article  CAS  PubMed  Google Scholar 

  • Marc RE, Jones BW, Watt CB, Anderson JR, Sigulinsky C, Lauritzen S (2013) Retinal connectomics: towards complete, accurate networks. Prog Retin Eye Res 37:141–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Margolis DJ, Detwiler PB (2011) Cellular origin of spontaneous ganglion cell spike activity in animal models of retinitis pigmentosa. J Ophthalmol 2011:pii: 507037

    Google Scholar 

  • Martinek J, Stickler Y, Reichel M, Mayr W, Rattay F (2008) A novel approach to simulate Hodgkin-Huxley-like excitation with COMSOL multiphysics. Artif Organs 32:614–619

    Article  PubMed  Google Scholar 

  • Masland RH (2001) The fundamental plan of the retina. Nat Neurosci 4:877–886

    Article  CAS  PubMed  Google Scholar 

  • Masland RH (2012) The neuronal organization of the retina. Neuron 76:266–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matteucci PB, Chen SC, Tsai D, Dodds CWD, Dokos S, Morley JW, Lovell NH, Suaning GJ (2013) Current steering in retinal stimulation via a quasimonopolar stimulation paradigm. Invest Ophthalmol Vis Sci 54:4307–4320

    Article  PubMed  Google Scholar 

  • Maturana MI, Kameneva T, Burkitt AN, Meffin H, Grayden DB (2013) The effect of morphology upon electrophysiological responses of retinal ganglion cells: simulation results. J Comput Neurosci. https://doi.org/10.1007/s10827-013-0463-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Maturana MI, Apollo NV, Garrett DJ, Kameneva T, Cloherty SL, Grayden DB, Burkitt AN, Ibbotson MR, Meffin H (2018) Electrical receptive fields of retinal ganglion cells: influence of presynaptic neurons. PLoS Comput Biol 14:e1005997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCormick DA, Shu Y, Yu Y (2007) Neurophysiology: Hodgkin and Huxley model – still standing? Nature 445:1060–1063

    Article  CAS  Google Scholar 

  • Mennerick S, Zenisek D, Matthews G (1997) Static and dynamic membrane properties of large-terminal bipolar cells from goldfish retina: experimental test of a compartment model. J Neurophysiol 78:51–62

    Article  CAS  PubMed  Google Scholar 

  • Miller RF, Stenback K, Henderson D, Sikora M (2002) How voltage-gated ion channels alter the functional properties of ganglion and amacrine cell dendrites. Arch Ital Biol 140:347–359

    CAS  PubMed  Google Scholar 

  • Miller RF, Staff NP, Velte TJ (2006) Form and function of ON-OFF amacrine cells in the amphibian retina. J Neurophysiol 95:3171–3190

    Article  PubMed  Google Scholar 

  • Nivison-Smith L, Sun D, Fletcher EL, Marc RE, Kalloniatis M (2013) Mapping kainate activation of inner neurons in the rat retina. J Comp Neurol 521:2416–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien BJ, Isayama T, Richardson R, Berson DM (2002) Intrinsic physiological properties of cat retinal ganglion cells. J Physiol 538:787–802

    Article  PubMed  PubMed Central  Google Scholar 

  • Oesch N, Euler T, Taylor WR (2005) Direction-selective dendritic action potentials in rabbit retina. Neuron 47:739–750

    Article  CAS  PubMed  Google Scholar 

  • Ogura T, Satoh TO, Usui S, Yamada M (2003) A simulation analysis on mechanisms of damped oscillation in retinal rod photoreceptor cells. Vis Res 43:2019–2028

    Article  PubMed  Google Scholar 

  • Pillow JW, Paninski L, Uzzell VJ, Simoncelli EP, Chichilnisky EJ (2005) Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. J Neurosci 25:11003–11013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, Simoncelli EP (2008) Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454:995–U37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poznanski RR (1992) Modelling the electrotonic structure of starburst amacrine cells in the rabbit retina: a functional interpretation of dendritic morphology. Bull Math Biol 54:905–928

    Article  CAS  PubMed  Google Scholar 

  • Publio R, Oliveira RF, Roquea AC (2006) A realistic model of rod photoreceptor for use in a retina network model. Neurocomputing 69:1020–1024

    Article  Google Scholar 

  • Publio R, Oliveira RF, Roque AC (2009) A computational study on the role of gap junctions and rod I-h conductance in the enhancement of the dynamic range of the retina. PLoS One 4:e6970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Publio R, Ceballos CC, Roque AC (2012) Dynamic range of vertebrate retina ganglion cells: importance of active dendrites and coupling by electrical synapses. PLoS One 7:e48517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin W, Hadjinicolaou A, Grayden DB, Meffin H, Burkitt AN, Ibbotson MR, Kameneva T (2017) Single-compartment models of retinal ganglion cells with different electrophysiologies. Network 28:74–93

    Article  PubMed  Google Scholar 

  • Rattay F, Resatz S (2004) Effective electrode configuration for selective stimulation with inner eye prostheses. IEEE Trans Biomed Eng 51:1659–1664

    Article  PubMed  Google Scholar 

  • Rattay F, Resatz S, Lutter P, Minassian K, Jilge B, Dimitrijevic MR (2003) Mechanisms of electrical stimulation with neural prostheses. Neuromodulation 6:42–56

    Article  CAS  PubMed  Google Scholar 

  • Resatz S, Rattay F (2004) A model for the electrically stimulated retina. Math Comput Model Dyn Syst 10:93–106

    Article  Google Scholar 

  • Ristanovic D, Milosevic NT, Jelinek HF, Stefanovic IB (2009) Mathematical modelling of neuronal dendritic branching patterns in two dimensions: application to retinal ganglion cells in the cat and rat. Biol Cybern 100:97–108

    Article  PubMed  Google Scholar 

  • Robson JG, Frishman LJ (1995) Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram. Vis Neurosci 12:837–850

    Article  CAS  PubMed  Google Scholar 

  • Robson JG, Frishman LJ (1996) Photoreceptor and bipolar-cell contributions to the cat electroretinogram: A kinetic model for the early part of the flash response. J Opt Soc Am A Opt Image Sci Vis 13:613–622

    Article  CAS  PubMed  Google Scholar 

  • Rockhill RL, Daly FJ, Macneil MA, Brown SP, Masland RH (2002) The diversity of ganglion cells in a mammalian retina. J Neurosci 22:3831–3843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roska B, Meister M (2014) The retina dissects visual scenes into distinct features. In: Werner JS, Chalupa LM (eds) The new visual neurosciences. MIT Press, London

    Google Scholar 

  • Roth BJ, Wikswo JP (1994) Electrical-stimulation of cardiac tissue – a Bidomain model with active membrane-properties. IEEE Trans Biomed Eng 41:232–240

    Article  CAS  PubMed  Google Scholar 

  • Saglam M, Hayashida Y, Murayama N (2009) A retinal circuit model accounting for wide-field amacrine cells. Cogn Neurodyn 3:25–32

    Article  PubMed  Google Scholar 

  • Schachter MJ, Oesch N, Smith RG, Taylor WR (2010) Dendritic spikes amplify the synaptic signal to enhance detection of motion in a simulation of the direction-selective ganglion cell. PLoS Comput Biol 6:e1000899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schiefer MA, Grill WM (2006) Sites of neuronal excitation by epiretinal electrical stimulation. IEEE Trans Neural Syst Rehabil Eng 14:5–13

    Article  PubMed  Google Scholar 

  • Shah S, Levine MD (1996a) Visual information processing in primate cone pathways. I. A model. IEEE Trans Syst Man Cybern B Cybern 26:259–274

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Levine MD (1996b) Visual information processing in primate cone pathways. II. Experiments. IEEE Trans Syst Man Cybern B Cybern 26:275–289

    Article  CAS  PubMed  Google Scholar 

  • Sheasby BW, Fohlmeister JF (1999) Impulse encoding across the dendritic morphologies of retinal ganglion cells. J Neurophysiol 81:1685–1698

    Article  CAS  PubMed  Google Scholar 

  • Shirahata T (2008) Simulation of rabbit A-type retinal horizontal cell that generates repetitive action potentials. Neurosci Lett 439:116–118

    Article  CAS  PubMed  Google Scholar 

  • Shirahata T (2011) The effect of variations in sodium conductances on pacemaking in a dopaminergic retinal neuron model. Acta Biol Hung 62:211–214

    Article  CAS  PubMed  Google Scholar 

  • Sivyer B, Williams SR (2013) Direction selectivity is computed by active dendritic integration in retinal ganglion cells. Nat Neurosci 16:1848–1856

    Article  CAS  PubMed  Google Scholar 

  • Smith RG (1995) Simulation of an anatomically defined local circuit: the cone-horizontal cell network in cat retina. Vis Neurosci 12:545–561

    Article  CAS  PubMed  Google Scholar 

  • Smith RG, Vardi N (1995) Simulation of the Aii Amacrine cell of mammalian retina – functional consequences of electrical coupling and regenerative membrane-properties. Vis Neurosci 12:851–860

    Article  CAS  PubMed  Google Scholar 

  • Smith RG, Freed MA, Sterling P (1986) Microcircuitry of the dark-adapted cat retina – functional architecture of the rod cone network. J Neurosci 6:3505–3517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffen MA, Seay CA, Amini B, Cai YD, Feigenspan A, Baxter DA, Marshak DW (2003) Spontaneous activity of dopaminergic retinal neurons. Biophys J 85:2158–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabata T, Ishida AT (1996) Transient and sustained depolarization of retinal ganglion cells by Ih. J Neurophysiol 75:1932–1943

    Article  CAS  PubMed  Google Scholar 

  • Taylor GC, Coles JA, Eilbeck JC (1995) Mathematical-modeling of weakly nonlinear pulses in a retinal neuron. Chaos, Solitons Fractals 5:407–413

    Article  Google Scholar 

  • Teeters J, Jacobs A, Werblin F (1997) How neural interactions form neural responses in the salamander retina. J Comput Neurosci 4:5–27

    Article  CAS  PubMed  Google Scholar 

  • Traub RD, Contreras D, Cunningham MO, Murray H, Lebeau FE, Roopun A, Bibbig A, Wilent WB, Higley MJ, Whittington MA (2005) Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol 93:2194–2232

    Article  PubMed  Google Scholar 

  • Trenholm S, Awatramani GB (2015) Origins of spontaneous activity in the degenerating retina. Front Cell Neurosci 9:277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai D, Chen S, Protti DA, Morley JW, Suaning GJ, Lovell NH (2012) Responses of retinal ganglion cells to extracellular electrical stimulation, from single cell to population: model-based analysis. PLoS One 7:e53357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai D, Morley JW, Suaning GJ, Lovell NH (2017) Survey of electrically evoked responses in the retina – stimulus preferences and oscillation among neurons. Sci Rep 7:13802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tukker JJ, Taylor WR, Smith RG (2004) Direction selectivity in a model of the starburst amacrine cell. Vis Neurosci 21:611–625

    Article  PubMed  Google Scholar 

  • Twyford P, Cai C, Fried S (2014) Differential responses to high-frequency electrical stimulation in ON and OFF retinal ganglion cells. J Neural Eng 11:025001

    Article  PubMed  PubMed Central  Google Scholar 

  • Usui S, Mitarai G, Sakakibara M (1983) Discrete nonlinear reduction model for horizontal cell response in the carp retina. Vis Res 23:413–420

    Article  CAS  PubMed  Google Scholar 

  • Usui S, Ishihara A, Kamiyama Y, Ishii H (1996a) Ionic current model of bipolar cells in the lower vertebrate retina. Vis Res 36:4069–4076

    Article  CAS  PubMed  Google Scholar 

  • Usui S, Kamiyama Y, Ishii H, Ikeno H (1996b) Reconstruction of retinal horizontal cell responses by the ionic current model. Vis Res 36:1711–1719

    Article  CAS  PubMed  Google Scholar 

  • Vallerga S, Covacci R, Pottala EW (1980) Artificial cone responses – a computer-driven hardware model. Vis Res 20:453–457

    Article  CAS  PubMed  Google Scholar 

  • van Elburg RA, van Ooyen A (2010) Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLoS Comput Biol 6:e1000781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Hateren JH, Snippe HP (2007) Simulating human cones from mid-mesopic up to high-photopic luminances. J Vis 7:1–11

    Article  PubMed  Google Scholar 

  • Velte TJ, Masland RH (1999) Action potentials in the dendrites of retinal ganglion cells. J Neurophysiol 81:1412–1417

    Article  CAS  PubMed  Google Scholar 

  • Velte TJ, Miller RF (1995) Dendritic integration in ganglion cells of the mudpuppy retina. Vis Neurosci 12:165–175

    Article  CAS  PubMed  Google Scholar 

  • Velte TJ, Miller RF (1997) Spiking and nonspiking models of starburst amacrine cells in the rabbit retina. Vis Neurosci 14:1073–1088

    Article  CAS  PubMed  Google Scholar 

  • Victor JD (1987) The dynamics of the cat retinal X-cell center. J Physiol 386:219–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Victor JD (1988) The dynamics of the cat retinal Y-cell subunit. J Physiol 405:289–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigh J, Banvolgyi T, Wilhelm M (2000) Amacrine cells of the anuran retina: morphology, chemical neuroanatomy, and physiology. Microsc Res Tech 50:373–383

    Article  CAS  PubMed  Google Scholar 

  • Werginz P, Fried SI, Rattay F (2014) Influence of the sodium channel band on retinal ganglion cell excitation during electric stimulation – a modeling study. Neuroscience 266:162–177

    Article  CAS  PubMed  Google Scholar 

  • Werginz P, Benav H, Zrenner E, Rattay F (2015) Modeling the response of ON and OFF retinal bipolar cells during electric stimulation. Vis Res 111:170–181

    Article  CAS  PubMed  Google Scholar 

  • Wohrer A, Kornprobst P (2009) Virtual retina: a biological retina model and simulator, with contrast gain control. J Comput Neurosci 26:219–249

    Article  PubMed  Google Scholar 

  • Wong RC, Cloherty SL, Ibbotson MR, O’Brien BJ (2012) Intrinsic physiological properties of rat retinal ganglion cells with a comparative analysis. J Neurophysiol 108:2008–2023

    Article  PubMed  Google Scholar 

  • Yang CY, Lukasiewicz P, Maguire G, Werblin FS, Yazulla S (1991) Amacrine cells in the tiger salamander retina: morphology, physiology, and neurotransmitter identification. J Comp Neurol 312:19–32

    Article  CAS  PubMed  Google Scholar 

  • Yang CY, Tsai D, Guo T, Dokos S, Suaning GJ, Morley JW, Lovell NH (2018) Differential electrical responses in retinal ganglion cell subtypes: effects of synaptic blockade and stimulating electrode location. J Neural Eng 15:046020

    Article  PubMed  Google Scholar 

  • Yin S, Lovell NH, Suaning GJ, Dokos S (2010) A continuum model of the retinal network and its response to electrical stimulation. Conf Proc IEEE Eng Med Biol Soc 2010:2077–2080

    Google Scholar 

  • Yin S, Lovell NH, Suaning GJ, Dokos S (2011) Continuum model of light response in the retina. Conf Proc IEEE Eng Med Biol Soc 2011:908–911

    Google Scholar 

  • Zhang YF, Kim IJ, Sanes JR, Meister M (2012) The most numerous ganglion cell type of the mouse retina is a selective feature detector. Proc Natl Acad Sci U S A 109:E2391–E2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Socrates Dokos .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dokos, S., Guo, T. (2020). Computational Models of Neural Retina. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_652-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_652-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Computational Models of Neural Retina
    Published:
    17 March 2020

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_652-2

  2. Original

    Computational Models of Neural Retina
    Published:
    31 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_652-1