Skip to main content

Core Decomposition of Massive, Information-Rich Graphs

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Social Network Analysis and Mining

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aksu H, Canim M, Chang YC, Korpeoglu I, Ulusoy Ö (2014) Distributed k-core view materialization and maintenance for large dynamic graphs. IEEE Trans Knowledge Data Eng (TKDE) 26(10):2439–2452

    Article  Google Scholar 

  • Altaf-Ul-Amin M, Nishikata K, Koma T, Miyasato T, Shinbo Y, Md WC, Maeda M, Oshima T, Mori H, Kanaya S (2003) Prediction of protein functions based on k-cores of protein-protein interaction networks and amino acid sequences. Genome Inform 14:498–499

    Google Scholar 

  • Alvarez-Hamelin JI, Dall’Asta L, Barrat A, Vespignani A (2005) Large scale networks fingerprinting and visualization using the k-core decomposition. In: Proceedings of the international conference on neural information processing systems (NIPS), pp 41–50

    Google Scholar 

  • Alvarez-Hamelin JI, Dall’Asta L, Barrat A, Vespignani A (2008) K-core decomposition of internet graphs: hierarchies, self-similarity and measurement biases. Networks Heterogeneous Media 3(2):395–411

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen R, Chellapilla K (2009) Finding dense subgraphs with size bounds. In: Proceedings of the international work on algorithms and models for the web-graph (WAW), pp 25–37

    Google Scholar 

  • Aragón P, Kappler KE, Kaltenbrunner A, Laniado D, Volkovich Y (2013) Communication dynamics in Twitter during political campaigns: the case of the 2011 Spanish national election. Policy & Internet 5(2):183–206

    Article  Google Scholar 

  • Azimi-Tafreshi N, Gómez-Gardeñes J, Dorogovtsev SN (2014) k-Core percolation on multiplex networks. Phys Rev E 90(3):032816

    Article  Google Scholar 

  • Bader GD, Hogue CWV (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2

    Article  Google Scholar 

  • Bae J, Kim S (2014) Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Phys A: Stat Mech Appl 395:549–559

    Article  MathSciNet  Google Scholar 

  • Barbieri N, Bonchi F, Galimberti E, Gullo F (2015) Efficient and effective community search. Data Mining Knowledge Discov 29(5):1406–1433

    Article  MathSciNet  Google Scholar 

  • Batagelj V, Zaveršnik M (2011) Fast algorithms for determining (generalized) core groups in social networks. ADAC 5(2):129–145

    Article  MathSciNet  MATH  Google Scholar 

  • Batagelj V, Mrvar A, Zaversnik M (1999) Partitioning approach to visualization of large graphs. In: Proceedings of the international symposium on graph drawing, pp 90–97

    Google Scholar 

  • Boldi P, Vigna S (2004) The webgraph framework I: compression techniques. In: Proceedings of the international conference on World Wide Web (WWW), pp 595–602

    Google Scholar 

  • Bollobás B (1984) The evolution of random graphs. Trans Am Math Soc 286:257–274

    Article  MathSciNet  MATH  Google Scholar 

  • Bonchi F, Gionis A, Gullo F, Ukkonen A (2014a) Distance oracles in edge-labeled graphs. In: Proceedings of the international conference on extending database technology (EDBT), pp 547–558

    Google Scholar 

  • Bonchi F, Gullo F, Kaltenbrunner A, Volkovich Y (2014b) Core decomposition of uncertain graphs. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining (KDD), pp 1316–1325

    Google Scholar 

  • Bonchi F, Gionis A, Gullo F, Tsourakakis CE, Ukkonen A (2015) Chromatic correlation clustering. ACM Trans Knowledge Discov Data 9(4):34

    Google Scholar 

  • Carmi S, Havlin S, Kirkpatrick S, Shavitt Y, Shir E (2007) MEDUSA - new model of internet topology using k-shell decomposition. Proc Nat Acad Sci 104:11,150–11,154

    Article  Google Scholar 

  • Cheng J, Ke Y, Chu S, Ozsu MT (2011) Efficient core decomposition in massive networks. In: Proceedings of the IEEE international conference on data engineering (ICDE), pp 51–62

    Google Scholar 

  • Cheng Y, Lu C, Wang N (2013) Local k-core clustering for gene networks. In: Proceedings of the IEEE international conference on bioinformatics and biomedicine, pp 9–15

    Google Scholar 

  • Dasari NS, Ranjan D, Zubair M (2014) ParK: an efficient algorithm for k-core decomposition on multicore processors. In: Proceedings of the IEEE international conference on big data, pp 9–16

    Google Scholar 

  • Dorogovtsev SN, Goltsev AV, Mendes JFF (2006) k-Core organization of complex networks. Phys Rev Lett 96(4):040,601

    Article  MATH  Google Scholar 

  • Eppstein D, Löffler M, Strash D (2010) Listing all maximal cliques in sparse graphs in near-optimal time. In: Proceedings of the international symposium on algorithms and computation (ISAAC), pp 403–414

    Google Scholar 

  • Gaertler M, Patrignani M (2004) Dynamic analysis of the autonomous system graph. In: Proceedings of the international work on inter-domain performance and simulation, pp 13–24

    Google Scholar 

  • Garcia D, Mavrodiev P, Schweitzer F (2013) Social resilience in online communities: the autopsy of friendster. In: Proceedings of ACM conference on online social networks (COSN), pp 39–50

    Google Scholar 

  • Giatsidis C, Thilikos DM, Vazirgiannis M (2011) D-cores: measuring collaboration of directed graphs based on degeneracy. In: Proceedings of IEEE international conference on data mining (ICDM), pp 201–210

    Google Scholar 

  • Giatsidis C, Malliaros FD, Thilikos DM, Vazirgiannis M (2014) CoreCluster: a degeneracy based graph clustering framework. In: Proceedings of AAAI conference on artificial intelligence, pp 44–50

    Google Scholar 

  • Goltsev AV, Dorogovtsev SN, Mendes JFF (2006) k-core (bootstrap) percolation on complex networks: critical phenomena and nonlocal effects. Physical Review E 73:056101

    Article  MathSciNet  Google Scholar 

  • Healy J, Janssen J, Milios EE, Aiello W (2006) Characterization of graphs using degree cores. In: Proceedings of international work on algorithms and models for the Web-Graph (WAW), pp 137–148

    Google Scholar 

  • Khan A, Bonchi F, Gionis A, Gullo F (2014) Fast reliability search in uncertain graphs. In: Proceedings of international conference on extending database technology (EDBT), pp 535–546

    Google Scholar 

  • Khan A, Gullo F, Wohler T, Bonchi F (2015) Top-k reliable edge colors in uncertain graphs. In: Proceedings of the ACM international conference on information and knowledge management (CIKM), pp 1851–1854

    Google Scholar 

  • Khaouid W, Barsky M, Srinivasan V, Thomo A (2015) K-core decomposition of large networks on a single PC. Proc VLDB Endowment 9(1):13–23

    Article  Google Scholar 

  • Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010) Identifying influential spreaders in complex networks. Nat Phys 6(11):888–893

    Article  Google Scholar 

  • Kortsarz G, Peleg D (1994) Generating sparse 2-spanners. J Algorithms 17(2):222–236

    Article  MathSciNet  MATH  Google Scholar 

  • Kyrola A, Blelloch G, Guestrin C (2012) GraphChi: Large-scale graph computation on just a PC. In: Proceedings of the USENIX conference on operating systems design and implementation (OSDI), pp 31–46

    Google Scholar 

  • Lee VE, Ruan N, Jin R, Aggarwal C (2010) A survey of algorithms for dense subgraph discovery. In: Managing and mining graph data. Springer, New York, pp 303–336

    Chapter  Google Scholar 

  • Li R, Yu JX, Mao R (2014) Efficient core maintenance in large dynamic graphs. IEEE Trans Knowledge Data Eng 26(10):2453–2465

    Article  Google Scholar 

  • Luczak T (1991) Size and connectivity of the k-core of a random graph. Discret Math 91(1):61–68

    Article  MathSciNet  MATH  Google Scholar 

  • Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G (2010) Pregel: a system for large-scale graph processing. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 135–146

    Google Scholar 

  • Malliaros FD, Papadopoulos AN, Vazirgiannis M (2016) Core decomposition in graphs: concepts, algorithms and applications. In: Proceedings of international conference on extending database technology (EDBT), pp 720–721

    Google Scholar 

  • Montresor A, Pellegrini FD, Miorandi D (2013) Distributed k-core decomposition. IEEE Trans Parallel Distribut Syst 24(2):288–300

    Article  Google Scholar 

  • O’Brien MP, Sullivan BD (2014) Locally estimating core numbers. In: Proceedings of IEEE international conference on data mining (ICDM), pp 460–469

    Google Scholar 

  • Papadopoulos S, Kompatsiaris Y, Vakali A, Spyridonos P (2012) Community detection in social media. Data Mining Knowledge Discov 24(3):515–554

    Article  Google Scholar 

  • Parchas P, Gullo F, Papadias D, Bonchi F (2015) Uncertain graph processing through representative instances. ACM Trans Database Syst 40(3):20

    Article  MathSciNet  Google Scholar 

  • Pei S, Makse HA (2013) Spreading dynamics in complex networks. J Stat Mech Theory Exper 12

    Google Scholar 

  • Rossi MG, Malliaros FD, Vazirgiannis M (2015) Spread it good, spread it fast: Identification of influential nodes in social networks. In: Proceedings of the internatinal conference on World Wide Web - Companion Volume (WWW Companion), pp 101–102

    Google Scholar 

  • Ruchansky N, Bonchi F, García-Soriano D, Gullo F, Kourtellis N (2015) The minimum wiener connector problem. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 1587–1602

    Google Scholar 

  • Saríyüce AE, Gedik B, Jacques-Silva G, Wu KL, Çatalyürek ÜV (2013) Streaming algorithms for k-core decomposition. Proc VLDB Endowment 6(6):433–444

    Article  Google Scholar 

  • Saríyüce AE, Gedik B, Jacques-Silva G, Wu KL, Çatalyürek ÜV (2016) Incremental k-core decomposition: algorithms and evaluation. VLDB J 25(3):425–447

    Article  Google Scholar 

  • Seidman SB (1983) Network structure and minimum degree. Soc Networks 5(3):269–287

    Article  MathSciNet  Google Scholar 

  • Tsourakakis C, Bonchi F, Gionis A, Gullo F, Tsiarli M (2013) Denser than the densest subgraph: extracting optimal quasi-cliques with quality guarantees. In: Proceedings of ACM SIGKDD international conference on knowledge discovery and data mining (KDD), pp 104–112

    Google Scholar 

  • Wen D, Qin L, Zhang Y, Lin X, Yu JX (2016) I/O efficient core graph decomposition at web scale. In: Proceedings of IEEE international conference on data engineering (ICDE)

    Google Scholar 

  • Wu H, Cheng J, Lu Y, Ke Y, Huang Y, Yan D, Wu H (2015) Core decomposition in large temporal graphs. In: Proceedings of IEEE internation conference on big data, pp 649–658

    Google Scholar 

  • Wuchty S, Almaas E (2005) Peeling the yeast protein network. Proteomics 5(2):444–449

    Article  Google Scholar 

  • Yan D, Cheng J, Lu Y, Ng W (2014) Blogel: a block-centric framework for distributed computation on real-world graphs. Proc VLDB Endowment 7(14):1981–1992

    Article  Google Scholar 

  • Zhang H, Zhao H, Cai W, Liu J, Zhou W (2010) Using the k-core decomposition to analyze the static structure of large-scale software systems. J Supercomput 53(2):352–369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bonchi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Bonchi, F., Gullo, F., Kaltenbrunner, A. (2017). Core Decomposition of Massive, Information-Rich Graphs. In: Alhajj, R., Rokne, J. (eds) Encyclopedia of Social Network Analysis and Mining. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7163-9_110176-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7163-9_110176-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7163-9

  • Online ISBN: 978-1-4614-7163-9

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics