Skip to main content

Paraspinal Magnetic and Transcutaneous Electrical Stimulation

  • Reference work entry
  • First Online:
  • 113 Accesses

Synonyms

High-voltage paraspinal electrical stimulation; High-voltage percutaneous electrical stimulation; Magnetic paravertebral stimulation; Magnetic spinal stimulation; Paravertebral neuromagnetic stimulation; Spinal electromagnetic stimulation; Spinal neuromagnetic stimulation; Spinal root stimulation; Transcutaneous posterior root stimulation; Transcutaneous spinal cord stimulation; Transcutaneous spinal stimulation; Transspinal stimulation

Definition

Paraspinal magnetic and electrical stimulation target deep neural structures within the vertebral canal and in between neighboring vertebrae from a distance of several centimeters, with either magnetic coils or skin electrodes. The principal mechanism of stimulation at the neuronal level is the same for magnetic and electrical stimulation and is given by the induced electric field component or, in an equivalent way, the electric potential, generated along the anatomical path of the nerve fibers. Yet the generation of electric fields...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Chokroverty S, Deutsch A, Guha C, Gonzalez A, Kwan P, Burger R, Goldberg J (1995) Thoracic spinal nerve and root conduction: a magnetic stimulation study. Muscle Nerve 18:987–991

    CAS  PubMed  Google Scholar 

  • Cogiamanian F, Vergari M, Schiaffi E, Marceglia S, Ardolino G, Barbieri S, Priori A (2011) Transcutaneous spinal cord direct current stimulation inhibits the lower limb nociceptive flexion reflex in human beings. Pain 152:370–375

    PubMed  Google Scholar 

  • Cohen D, Cuffin BN (1991) Developing a more focal magnetic stimulator, part I: some basic principles. J Clin Neurophysiol 8:102–111

    CAS  PubMed  Google Scholar 

  • Danner SM, Hofstoetter US, Ladenbauer J, Rattay F, Minassian M (2011) Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study. Artif Organs 35:257–262

    PubMed Central  PubMed  Google Scholar 

  • de Noordhout AM, Rothwell JC, Thompson PD, Day BL, Marsden CD (1988) Percutaneous electrical stimulation of lumbosacral roots in man. J Neurol Neurosurg Psychiatry 51:174–181

    Google Scholar 

  • Di Lazzaro V, Oliviero A (2005) Evaluation of myelopathy, radiculopathy, and thoracic nerve. In: Hallett M, Chokroverty S (eds) Magnetic stimulation in clinical neurophysiology, 2nd edn. Elsevier, Philadelphia, pp 105–127

    Google Scholar 

  • DiMarco AF (2005) Restoration of respiratory muscle function following spinal cord injury. Review of electrical and magnetic stimulation techniques. Respir Physiol Neurobiol 147:273–287

    PubMed  Google Scholar 

  • Dimitrijevic MM, Dimitrijevic MR, Illis LS, Nakajima K, Sharkey PC, Sherwood AM (1986) Spinal cord stimulation for the control of spasticity in patients with chronic spinal cord injury: I. Clinical observations. CNS Trauma 3:129–144

    CAS  Google Scholar 

  • Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998) Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci 860:360–376

    CAS  PubMed  Google Scholar 

  • Dy CJ, Gerasimenko YP, Edgerton VR, Dyhre-Poulsen P, Courtine G, Harkema SJ (2010) Phase-dependent modulation of percutaneously elicited multisegmental muscle responses after spinal cord injury. J Neurophysiol 103:2808–2820

    PubMed Central  PubMed  Google Scholar 

  • Epstein CM (2008) TMS stimulation coils. In: Wassermann EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) The Oxford handbook of transcranial stimulation. Oxford University Press, New York, pp 25–32

    Google Scholar 

  • Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG, Edgerton VR (2011) Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377:1938–1947

    PubMed Central  PubMed  Google Scholar 

  • Herman R, He J, D’Luzansky S, Willis W, Dilli S (2002) Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord 40:65–68

    CAS  PubMed  Google Scholar 

  • Hofstoetter US, Minassian K, Hofer C, Mayr W, Rattay F, Dimitrijevic MR (2008) Modification of reflex responses to lumbar posterior root stimulation by motor tasks in healthy subjects. Artif Organs 2:644–648

    Google Scholar 

  • Hofstoetter US, Hofer C, Kern H, Danner SM, Mayr W, Dimitrijevic MR, Minassian K (2013a) Effects of transcutaneous spinal cord stimulation on voluntary locomotor activity in an incomplete spinal cord injured individual. Biomed Tech (Berl). doi:10.1515/bmt-2013-4014

    Google Scholar 

  • Hofstoetter US, McKay WB, Tansey KE, Mayr W, Kern H, Minassian K (2013b) Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med 37(2):202–211. doi:10.1179/2045772313Y.0000000149

    PubMed  Google Scholar 

  • Huang H, He J, Herman R, Carhart MR (2006) Modulation effects of epidural spinal cord stimulation on muscle activities during walking. IEEE Trans Neural Syst Rehabil Eng 14:14–23

    PubMed  Google Scholar 

  • Hubli M, Dietz V, Schrafl-Altermatt M, Bolliger M (2013) Modulation of spinal neuronal excitability by spinal direct currents and locomotion after spinal cord injury. Clin Neurophysiol 124:1187–1195

    CAS  PubMed  Google Scholar 

  • Jilge B, Minassian K, Rattay F, Pinter MM, Gerstenbrand F, Binder H, Dimitrijevic MR (2004) Initiating extension of the lower limbs in subjects with complete spinal cord injury by epidural lumbar cord stimulation. Exp Brain Res 154:308–326

    CAS  PubMed  Google Scholar 

  • Kitano K, Koceja DM (2009) Spinal reflex in human lower leg muscles evoked by transcutaneous spinal cord stimulation. J Neurosci Methods 180:111–115

    PubMed  Google Scholar 

  • Krause P, Edrich T, Straube A (2004) Lumbar repetitive magnetic stimulation reduces spastic tone increase of the lower limbs. Spinal Cord 42:67–72

    CAS  PubMed  Google Scholar 

  • Ladenbauer J, Minassian K, Hofstoetter US, Dimitrijevic MR, Rattay F (2010) Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study. IEEE Trans Neural Syst Rehabil Eng 18:637–645

    PubMed  Google Scholar 

  • Lin V, Hsiao I (2005) Clinical applications of functional magnetic stimulation in patients with spinal cord injuries. In: Hallett M, Chokroverty S (eds) Magnetic stimulation in clinical neurophysiology, 2nd edn. Elsevier, Philadelphia, pp 393–410

    Google Scholar 

  • Maccabee PJ, Amassian VE, Eberle LP, Rudell AP, Cracco RQ, Lai KS, Somasundarum M (1991) Measurement of the electric field induced into inhomogeneous volume conductors by magnetic coils: application to human spinal neurogeometry. Electroencephalogr Clin Neurophysiol 81:224–237

    CAS  PubMed  Google Scholar 

  • Maccabee PJ, Lipitz ME, Desudchit T, Golub RW, Nitti VW, Bania JP, Willer JA, Cracco RQ, Cadwell J, Hotson GC, Eberle LP, Amassian VE (1996) A new method using neuromagnetic stimulation to measure conduction time within the cauda equina. Electroencephalogr Clin Neurophysiol 101:153–166

    CAS  PubMed  Google Scholar 

  • Maccabee PJ, Eberle LP, Stein IA, Willer JA, Lipitz ME, Kula RW, Marx T, Muntean EV, Amassian VE (2011) Upper leg conduction time distinguishes demyelinating neuropathies. Muscle Nerve 43:518–530

    PubMed  Google Scholar 

  • Martin PG, Butler JE, Gandevia SC, Taylor JL (2008) Noninvasive stimulation of human corticospinal axons innervating leg muscles. J Neurophysiol 100:1080–1086

    CAS  PubMed  Google Scholar 

  • Matsumoto H, Octaviana F, Hanajima R, Terao Y, Yugeta A, Hamada M, Inomata-Terada S, Nakatani-Enomoto S, Tsuji S, Ugawa Y (2009a) Magnetic lumbosacral motor root stimulation with a flat, large round coil. Clin Neurophysiol 120:770–775

    PubMed  Google Scholar 

  • Matsumoto H, Octaviana F, Terao Y, Hanajima R, Yugeta A, Hamada M, Inomata-Terada S, Nakatani-Enomoto S, Tsuji S, Ugawa Y (2009b) Magnetic stimulation of the cauda equina in the spinal canal with a flat, large round coil. J Neurol Sci 284:46–51

    PubMed  Google Scholar 

  • Mills KR, Murray NM (1986) Electrical stimulation over the human vertebral column: which neural elements are excited? Electroencephalogr Clin Neurophysiol 63:582–589

    CAS  PubMed  Google Scholar 

  • Mills KR, McLeod C, Sheffy J, Loh L (1993) The optimal current direction for excitation of human cervical motor roots with a double coil magnetic stimulator. Electroencephalogr Clin Neurophysiol 89:138–144

    CAS  PubMed  Google Scholar 

  • Minassian K, Jilge B, Rattay F, Pinter MM, Binder H, Gerstenbrand F, Dimitrijevic MR (2004) Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials. Spinal Cord 42:401–416

    CAS  PubMed  Google Scholar 

  • Minassian K, Persy I, Rattay F, Dimitrijevic MR, Hofer C, Kern H (2007) Posterior root-muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord. Muscle Nerve 35:327–336

    PubMed  Google Scholar 

  • Minassian K, Hofstoetter US, Rattay F (2011) Transcutaneous lumbar posterior root stimulation for motor control studies and modification of motor activity after spinal cord injury. In: Dimitrijevic MR, Kakulas BA, McKay WB, Vrbova G (eds) Restorative neurology of spinal cord injury. Oxford University Press, New York, pp 226–255

    Google Scholar 

  • Minassian K, Hofstoetter U, Tansey K, Mayr W (2012) Neuromodulation of lower limb motor control in restorative neurology. Clin Neurol Neurosurg 114:489–497

    PubMed Central  PubMed  Google Scholar 

  • Miranda PC (2005) Basic electromagnetism. In: Hallett M, Chokroverty S (eds) Magnetic stimulation in clinical neurophysiology, 2nd edn. Elsevier, Philadelphia, pp 1–15

    Google Scholar 

  • Nielsen JF, Sinkjaer T (1997) Long-lasting depression of soleus motoneurons excitability following repetitive magnetic stimuli of the spinal cord in multiple sclerosis patients. Mult Scler 3:18–30

    CAS  PubMed  Google Scholar 

  • Pinter MM, Gerstenbrand F, Dimitrijevic MR (2000) Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control of spasticity. Spinal Cord 38:524–531

    CAS  PubMed  Google Scholar 

  • Rattay F (1999) The basic mechanisms for the electrical stimulation of the nervous system. Neuroscience 89:335–346

    CAS  PubMed  Google Scholar 

  • Riehl M (2008) TMS stimulator design. In: Wassermann EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) The oxford handbook of transcranial stimulation. Oxford University Press, New York, pp 13–23

    Google Scholar 

  • Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijević MR, Hallett M, Katayama Y, Lücking CH, de Noordhout AM, Marsden CD, Murray NM, Rothwell JC, Swash M, Tomberg C (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91:79–92

    CAS  PubMed  Google Scholar 

  • Roy FD, Gibson G, Stein RB (2012) Effect of percutaneous stimulation at different spinal levels on the activation of sensory and motor roots. Exp Brain Res 223:281–289

    PubMed  Google Scholar 

  • Sandbrink F (2008) The MEP in clinical neurodiagnosis. In: Wassermann EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) The Oxford handbook of transcranial stimulation. Oxford University Press, New York, pp 237–283

    Google Scholar 

  • Sommer M (2008) TMS waveform and current direction. In: Wassermann EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) The Oxford handbook of transcranial stimulation. Oxford University Press, New York, pp 7–12

    Google Scholar 

  • Szava Z, Danner SM, Minassian K (2011) Transcutaneous electrical spinal cord stimulation: biophysics of a new rehabilitation method after spinal cord injury. VDM Verlag Dr. Müller, Saarbrücken

    Google Scholar 

  • Taylor JL, Gandevia SC (2004) Noninvasive stimulation of the human corticospinal tract. J Appl Physiol 96:1496–1503

    CAS  PubMed  Google Scholar 

  • Troni W, Bianco C, Coletti Moja M, Dotta M (1996) Improved methodology for lumbosacral nerve root stimulation. Muscle Nerve 19:595–604

    CAS  PubMed  Google Scholar 

  • Troni W, Di Sapio A, Berra E, Duca S, Merola A, Sperli F, Bertolotto A (2011) A methodological reappraisal of non invasive high voltage electrical stimulation of lumbosacral nerve roots. Clin Neurophysiol 122:2071–2080

    PubMed  Google Scholar 

  • Troni W, Benech CA, Perez R, Tealdi S, Berardino M, Benech F (2013) Non-invasive high voltage electrical stimulation as a monitoring tool of nerve root function in lumbosacral surgery. Clin Neurophysiol 124:809–818

    PubMed  Google Scholar 

  • Ugawa Y, Rothwell JC, Day BL, Thompson PD, Marsden CD (1989) Magnetic stimulation over the spinal enlargements. J Neurol Neurosurg Psychiatry 52:1025–1032

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xia Q, Wang S, Passias PG, Kozanek M, Li G, Grottkau BE, Wood KB, Li G (2009) In vivo range of motion of the lumbar spinous processes. Eur Spine J 18:1355–1362

    PubMed Central  PubMed  Google Scholar 

  • Zidar J (2001) Are segmental conduction studies of the corticospinal tract in humans feasible? In: Proceedings of the international federation for medical & biological engineering. IFMBE Proceedings, Pula, pp 74–77

    Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the support of the Vienna Science and Technology Fund (WWTF), Proj.Nr. LS11–057, and the Wings for Life Spinal Cord Research Foundation (WfL), Proj.Nr. WFL-AT-007/11. Special thanks are due to Frank Rattay for his insightful comments and to Martin Schmoll for his support in preparing the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula S. Hofstötter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Hofstötter, U.S., Danner, S.M., Minassian, K. (2015). Paraspinal Magnetic and Transcutaneous Electrical Stimulation. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6675-8_603

Download citation

Publish with us

Policies and ethics