Skip to main content

Clinical Applications of Robots in Autism Spectrum Disorder Diagnosis and Treatment

  • Reference work entry

Abstract

Advances in socially assistive robotics have the potential to promote innovation in the diagnosis and treatment of individuals with Autism Spectrum Disorder (ASD). Research has revealed that individuals with ASD (1) show strengths in understanding the physical, object-related world and weaknesses in understanding the social world, (2) are more responsive to feedback given by a computer than a human, and (3) are more interested in treatment involving technology/robots. These findings suggest that a co-robot therapist may be an important addition to clinical assessment and/or therapy if it can emulate certain human therapist functions. Still, the majority of research in this area to date has focused on the development of technology, with scant attention paid to best practice clinical approaches. Therefore, the clinical use of robots for ASD should be considered an experimental approach to diagnosis and/or treatment until rigorous clinical trials are conducted and replicated. The end of this section includes a roadmap for future research on the clinical uses for robots in the diagnosis and treatment of individuals with ASD. Crucially, clinical innovation must parallel technological innovation if this approach is to become an accepted diagnostic and/or treatment approach for ASD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barakova EI. Robots for social training of autistic children. Empowering therapists in intensive training programs. In: Abraham et al. editors. Proceedings of IEEE WICT 2011, pp. 14–19

    Google Scholar 

  • Bird G, Leighton J, Press C, Heyes C. Intact automatic imitation of human and robot actions in autism spectrum disorders. Proc Royal Society London: B. 2007;274:3027–31.

    Article  Google Scholar 

  • Dautenhahn K, Werry I. Towards interactive robots in autism therapy: background motivation, and challenges. Prag Cog. 2004;12:1–35.

    Article  Google Scholar 

  • Diehl JJ, Schmitt L, Crowell CR, Villano M. The clinical use of robots for children with autism spectrum disorders: a critical review. Res Aut Spect Dis. 2012;6:249–62.

    Article  Google Scholar 

  • Feil-Seifer D, Matarić MJ. Toward socially assistive robotics for augmenting interventions for children with autism spectrum disorders. Exp Robotics. 2009;54:201–10.

    Article  Google Scholar 

  • Feil-Seifer D, Matarić MJ. Using robots to augment (not replace) people in therapeutic settings. Refereed workshop: robotics: science and system; 2011; Los Angeles.

    Google Scholar 

  • Feil-Seifer D, Matarić MJ. Defining socially assistive robotics. International conference on rehabilitation robotics; 2005; Chicago. p. 465–8.

    Google Scholar 

  • François D, Powell S, Dautenhahn K. A long-term study of children with autism playing with a robotic pet: taking inspirations from non-directive play therapy to encourage children’s proactivity and initiative-taking. Int Studies. 2009;10:324–73.

    Article  Google Scholar 

  • Gillesen J, Barakova EI, Huskens BE, Feijs LM. From training to robot behavior: towards custom scenarios for robotics in training programs for ASD. IEEE Rehab Robotics. 2011; 387–93.

    Google Scholar 

  • Hollerback JM, Mason MT, Christensen HI. A roadmap for U.S. robotics – from internet to robotics. Updated 2009. http://wwww.us-robotics.us. Accessed 1 Mar 2012.

  • Klin A, Jones W. Attributing social and physical meaning to ambiguous visual displays in individuals with higher-functioning autism spectrum disorders. Brain Cog. 2006;61:40–53.

    Article  Google Scholar 

  • Klin A, Jones W, Schultz R, Volkmar F, Cohen D. Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psych. 2002;59:809–16.

    Article  Google Scholar 

  • Klin A, Lin DJ, Gorrindo P, Ramsay G, Jones W. Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature. 2009;459:257–61.

    Article  PubMed  Google Scholar 

  • Lord C, Rutter M, DiLavore PC, Risi S. Autism diagnostic observation schedule. Los Angeles: Western Psychological Services; 1999.

    Google Scholar 

  • Lord C, Risi S, Lambrecht L, et al. Autism diagnostic observational schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Aut Dev Dis. 2000;30:205–23.

    Article  Google Scholar 

  • Lourens T, Barakova EI. User-friendly robot environment for creation of social scenarios. Found Nat Art Computation. 2011; LNCS 6686:212–21.

    Article  Google Scholar 

  • Lund HH, Pederson MD, Beck R. Modular robotic tiles: experiments for children with autism. Art Life Robotics. 2009;13:393–400.

    Google Scholar 

  • Ozonoff S. Reliability and validity of the wisconsin card sorting test in studies of autism. Neuropsychology. 1995;9:491–500. doi:10.1037/0894–4105.9.4.491.

    Article  Google Scholar 

  • Pierno AC, Mari M, Lusher D, Castiello U. Robotic movement elicits visuomotor priming in children with autism. Neuropsychologia. 2008;46:448–54.

    Article  PubMed  Google Scholar 

  • Riek LD. Wizard of oz studies in HRI: a systematic review and new reporting guidelines. J Hum Robot Int. 2012;1:119–136

    Article  Google Scholar 

  • Robins B, Dickerson P, Stribling P, Dautenhahn K. Robot-mediated joint attention in children with autism: a case study in robot-human interaction. Int Studies. 2004;5:161–98.

    Article  Google Scholar 

  • Robins B, Dautenhahn K, te Boekhorst R, Billard A. Robotic assistants in therapy and education of children with autism: can a small humanoid robot encourage social interaction skills? Univ Access Inform Soc. 2005;4:115–20.

    Google Scholar 

  • Robins B, Dautenhahn K, Dubowski J. Does appearance matter in the interaction of children with autism with a humanoid robot? Int Studies. 2006;7:509–12.

    Article  Google Scholar 

  • Rogers SJ, Vismara LA. Empirically supported comprehensive treatments for early autism. J Clin Child Adolesc Psychol. 2008;37:8–38.

    Article  PubMed  Google Scholar 

  • Scassellati B. How social robots will help us diagnose, treat, and understand autism. Robotics Res. 2007;28:552–63.

    Article  Google Scholar 

  • Stribling P, Rae J, Dickerson P. Using conversation analysis to explore the recurrence of a topic in the talk of a boy with autism spectrum disorder. Clin Ling Phon. 2009;23:555–82.

    Article  Google Scholar 

  • Tapus A, Matarić M, Scassellati B. The grand challenges in socially assistive robotics. IEEE Robotics Automat Mag. 2007;4:35–42.

    Article  Google Scholar 

  • Villano M, Crowell CR, Wier K, et al. DOMER: A wizard of oz interface for using interactive robots to scaffold social skills for children with autism spectrum disorders. ACM/IEEE international conference on human-robot interaction; 2011. p. 279–80.

    Google Scholar 

  • Wainer J, Ferrari E, Dautenhahn K, Robins B. The effectiveness of using a robotics class to foster collaboration among groups of children with autism in an exploratory study. Personal Ubiq Comput. 2010;14:445–55.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua J. Diehl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Diehl, J.J., Crowell, C.R., Villano, M., Wier, K., Tang, K., Riek, L.D. (2014). Clinical Applications of Robots in Autism Spectrum Disorder Diagnosis and Treatment. In: Patel, V., Preedy, V., Martin, C. (eds) Comprehensive Guide to Autism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4788-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4788-7_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4787-0

  • Online ISBN: 978-1-4614-4788-7

  • eBook Packages: Behavioral Science

Publish with us

Policies and ethics