Skip to main content

Control of Non-linear Partial Differential Equations

  • Reference work entry
  • 761 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Controllability

Stabilization

Optimal Control

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

State variables:

quantities describing the state of a system; in this note they will be denoted by u; in the present setting, u will be either a function defined on a subset of \({\mathbb{R}\times\mathbb{R}^n}\), or a function of time taking its values in an Hilbert space H.

Space domain:

the subset of \({\mathbb{R}^n}\) on which state variables are defined.

Partial differential equation:

a differential equation containing the unknown function as well as its partial derivatives.

State equation:

a differential equation describing the evolution of the system of interest.

Control function:

an external action on the state equation aimed at achieving a specific purpose; in this note, control functions they will be denoted by f; f will be used to denote either a function defined on a subset of \({\mathbb{R}\times\mathbb{R}^n}\), or a function of time taking its values in an Hilbert space F. If the state equation is a partial differential equation of evolution, then a control function can be:

  1. 1.

    distributed if it acts on the whole space domain;

  2. 2.

    locally distributed if it acts on a subset of the space domain;

  3. 3.

    boundary if it acts on the boundary of the space domain;

  4. 4.

    optimal if it minimizes (together with the corresponding trajectory) a given cost;

  5. 5.

    feedback if it depends, in turn, on the state of the system.

Trajectory:

the solution of the state equation u f that corresponds to a given control function f.

Distributed parameter system:

a system modeled by an evolution equation on an infinite dimensional space, such as a partial differential equation or a partial integro‐differential equation, or a delay equation; unlike systems described by finitely many state variables, such as the ones modeled by ordinary differential equations, the information concerning these systems is “distributed” among infinitely many parameters.

\({\mathbb{1}_A}\) denotes the characteristic function of a set \({A\subset\mathbb{R}^n}\), that is,

$$ \mathbb{1}_A(x)= \begin{cases} 1&x\in A \\ 0& x\in \mathbb{R}^n\setminus A \end{cases}$$

\({\partial_t\,,\;\partial_{x_i}}\) denote partial derivatives with respect to t and x i , respectively.

\({L^2(\Omega)}\) denotes the Lebesgue space of all real‐valued square integrable functions, where functions that differ on sets of zero Lebesgue measure are identified.

\({H^1_0(\Omega)}\) denotes the Sobolev space of all real‐valued functions which are square integrable together with their first order partial derivatives in the sense of distributions in Ω, and vanish on the boundary of Ω; similarly \({H^2(\Omega)}\) denotes the space of all functions which are square integrable together with their second order partial derivatives.

\({H^{-1}(\Omega)}\) denotes the dual of \({H^1_0(\Omega)}\).

\({\mathcal{H}^{n-1}}\) denotes the \({(n-1)}\)‐dimensional Hausdorff measure.

H denotes a normed spaces over ℝ with norm \({\|\cdot\|}\), as well as an Hilbert space with the scalar product \({\langle\cdot,\cdot\rangle}\) and norm \({\|\cdot\|}\).

\({L^2(0,T;H)}\) is the space of all square integrable functions \({f \colon [0,T]\to H}\); \({C([0,T];H)}\) (continuous functions) and \({H^1(0,T;H)}\) (Sobolev functions) are similarly defined .

Given Hilbert spaces F and H, \({\mathcal{L}(F,H)}\) denotes the (Banach) space of all bounded linear operators \( \Lambda \colon F\to H \) with norm \( \|\Lambda\|=\sup_{\|x\|=1}\|\Lambda x\| \) (when \({F=H}\), we use the abbreviated notation \( \mathcal{L}(H) \)); \( \Lambda^* \colon H\to F \) denotes the adjoint of Λ given by \( \langle \Lambda^*u,\phi\rangle=\langle u,\Lambda\phi\rangle \) for all \({u\in H}\), \({\phi\in F}\).

Bibliography

  1. Alabau F (1999) Stabilisation frontière indirecte de systèmes faiblement couplés. C R Acad Sci Paris Sér I 328:1015–1020

    Article  MathSciNet  MATH  Google Scholar 

  2. Alabau F (2002) Indirect boundary stabilization of weakly coupled systems. SIAM J Control Optim 41(2):511–541

    Article  MathSciNet  MATH  Google Scholar 

  3. Alabau‐Boussouira F (2003) A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems. SIAM J Control Optim 42(3):871–906

    Google Scholar 

  4. Alabau‐Boussouira F (2004) A general formula for decay rates of nonlinear dissipative systems. C R Math Acad Sci Paris 338:35–40

    Google Scholar 

  5. Alabau‐Boussouira F (2005) Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl Math Optim 51(1):61–105

    Google Scholar 

  6. Alabau‐Boussouira F (2006) Piecewise multiplier method and nonlinear integral inequalities for Petrowsky equations with nonlinear dissipation. J Evol Equ 6(1):95–112

    Google Scholar 

  7. Alabau‐Boussouira F (2007) Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control. NoDEA 14(5–6):643–669

    Google Scholar 

  8. Alabau F, Cannarsa P, Komornik V (2002) Indirect internal damping of coupled systems. J Evol Equ 2:127–150

    Article  MathSciNet  MATH  Google Scholar 

  9. Alabau‐Boussouira F, Cannarsa P, Fragnelli G (2006) Carleman estimates for degenerate parabolic operators with applications to null controllability. J Evol Equ 6:161–204

    Google Scholar 

  10. Alabau‐Boussouira F, Cannarsa P, Sforza D (2008) Decay estimates for second order evolution equations with memory. J Funct Anal 254(5):1342–1372

    Google Scholar 

  11. Ammari K, Tucsnak M (2001) Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM Control Optim Calc Var 6:361–386

    Article  MathSciNet  MATH  Google Scholar 

  12. Ammar‐Khodja F, Bader A, Benabdallah A (1999) Dynamic stabilization of systems via decoupling techniques. ESAIM Control Optim Calc Var 4:577–593

    Google Scholar 

  13. Barbu V (2003) Feedback stabilization of Navier–Stokes equations. ESAIM Control Optim Calc Var 9:197–206

    Article  MathSciNet  MATH  Google Scholar 

  14. Barbu V Da Prato G (1983) Hamilton Jacobi equations in Hilbert spaces. Pitman, London

    MATH  Google Scholar 

  15. Barbu V, Lasiecka I, Triggiani R (2006) Tangential boundary stabilization of Navier–Stokes equations. Mem Amer Math Soc 181(852):128

    MathSciNet  Google Scholar 

  16. Barbu V, Triggiani R (2004) Internal stabilization of Navier–Stokes equations with finite‐dimensional controllers. Indiana Univ Math J 53(5):1443–1494

    Article  MathSciNet  MATH  Google Scholar 

  17. Bardos C, Lebeau G, Rauch R (1992) Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J Control Optim 30:1024–1065

    Article  MathSciNet  MATH  Google Scholar 

  18. Bátkai A, Engel KJ, Prüss J, Schnaubelt R (2006) Polynomial stability of operator semigroups. Math Nachr 279(13–14):1425–1440

    Google Scholar 

  19. Beauchard K (2005) Local controllability of a 1-D Schödinger equation. J Math Pures Appl 84(7):851–956

    MathSciNet  MATH  Google Scholar 

  20. Bellman R (1957) Dynamic Programming. Princeton University Press, Princeton

    MATH  Google Scholar 

  21. Benabdallah A, Dermenjian Y, Le Rousseau J (2007) Carleman estimates for the one‐dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem. J Math Anal Appl 336(2):865–887

    Article  MathSciNet  MATH  Google Scholar 

  22. Bensoussan A, Da Prato G, Delfour MC, Mitter SK (1993) Representation and Control of Infinite Dimensional Systems. Systems and Control: Foundations and applications, Birkhäuser, Boston

    Book  Google Scholar 

  23. Beyrath A (2001) Stabilisation indirecte localement distribué de systèmes faiblement couplés. C R Acad Sci Paris Sér I Math 333(5):451–456

    Article  MathSciNet  MATH  Google Scholar 

  24. Beyrath A (2004) Indirect linear locally distributed damping of coupled systems. Bol Soc Parana Mat 22(2):17–34

    MathSciNet  MATH  Google Scholar 

  25. Burq N, Gérard P (1997) Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C R Acad Sci Paris Sér I Math 325(7):749–752

    Google Scholar 

  26. Burq N, Hitrik M (2007) Energy decay for damped wave equations on partially rectangular domains. Math Res Lett 14(1):35–47

    MathSciNet  MATH  Google Scholar 

  27. Burq N, Lebeau G (2001) Mesures de défaut de compacité, application au système de Lamé. Ann Sci École Norm Sup (4) 34(6):817–870

    MathSciNet  Google Scholar 

  28. Cannarsa P (1989) Regularity properties of solutions to Hamilton–Jacobi equations in infinite dimensions and nonlinear optimal control. Diff Integral Equ 2:479–493

    MathSciNet  MATH  Google Scholar 

  29. Cannarsa P, Da Prato G (1990) Some results on non‐linear optimal control problems and Hamilton–Jacobi equations in infinite dimensions. J Funct Anal 90:27–47

    Article  MathSciNet  MATH  Google Scholar 

  30. Cannarsa P, Gozzi F, Soner HM (1991) A boundary value problem for Hamilton–Jacobi equations in Hilbert spaces. Applied Math Optim 24:197–220

    Article  MathSciNet  MATH  Google Scholar 

  31. Cannarsa P, Gozzi F, Soner HM (1993) A dynamic programming approach to nonlinear boundary control problems of parabolic type. J Funct Anal 117:25–61

    Article  MathSciNet  MATH  Google Scholar 

  32. Cannarsa P, Di Blasio G (1995) A direct approach to infinite dimensional Hamilton–Jacobi equations and applications to convex control with state constraints. Differ Integral Equ 8:225–246

    MATH  Google Scholar 

  33. Cannarsa P, Tessitore ME (1996) Infinite dimensional Hamilton–Jacobi equations and Dirichlet boundary control problems of parabolic type. SIAM J Control Optim 34:1831–1847

    Article  MathSciNet  MATH  Google Scholar 

  34. Cannarsa P, Komornik V, Loreti P (2002) One-sided and internal controllability of semilinear wave equations with infinitely iterated logarithms. Discret Contin Dyn Syst 8(3):745–756

    Article  MathSciNet  MATH  Google Scholar 

  35. Cannarsa P, Martinez P, Vancostenoble J (2004) Persistent regional null controllability for a class of degenerate parabolic equations. Commun Pure Appl Anal 3(4):607–635

    Article  MathSciNet  MATH  Google Scholar 

  36. Cannarsa P, Martinez P, Vancostenoble (2005) Null Controllability of degenerate heat equations. Adv Differ Equ 10(2):153–190

    MathSciNet  MATH  Google Scholar 

  37. Cavalcanti MM, Oquendo HP (2003) Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J Control Optim 42:1310–1324

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen G (1981) A note on boundary stabilization of the wave equation. SIAM J Control Optim 19:106–113

    Article  MathSciNet  MATH  Google Scholar 

  39. Chueshov I, Lasiecka I, Toundykov D (2008) Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discret Contin Dyn Syst 20(3):459–509

    MathSciNet  MATH  Google Scholar 

  40. Conrad F, Rao B (1993) Decay of solutions of the wave equation in a star‐shaped domain with nonlinear boundary feedback. Asymptot Anal 7:159–177

    MathSciNet  MATH  Google Scholar 

  41. Conrad F, Pierre (1994) Stabilization of second order evolution equations by unbounded nonlinear feedback. Ann Inst H Poincaré Anal Non Linéaire 11(5):485–515, Asymptotic Anal 7:159–177

    Google Scholar 

  42. Coron JM (1992) Global asymptotic stabilization for controllable systems without drift. Math Control Signals Syst 5(3):295–312

    Article  MathSciNet  MATH  Google Scholar 

  43. Coron JM (2007) Control and nonlinearity. Mathematical surveys and monographs vol 136, Providence, RI: xiv+426

    Google Scholar 

  44. Coron JM, Trélat E (2004) Global steady‐state controllability of one‐dimensional semilinear heat equations. SIAM J Control Optim 43(2):549–569

    Google Scholar 

  45. Crandall MG, Lions PL (1985) Hamilton Jacobi equation in infinite dimensions I: Uniqueness of viscosity solutions. J Funct Anal 62:379–396

    Article  MathSciNet  MATH  Google Scholar 

  46. Crandall MG, Lions PL (1986) Hamilton Jacobi equation in infinite dimensions II: Existence of viscosity solutions. J Funct Anal 65:368–425

    Article  MathSciNet  MATH  Google Scholar 

  47. Crandall MG, Lions PL (1986) Hamilton Jacobi equation in infinite dimensions III. J Funct Anal 68:214–247

    Article  MathSciNet  MATH  Google Scholar 

  48. Crandall MG, Lions PL (1990) Hamilton Jacobi equation in infinite dimensions IV: Hamiltonians with unbounded linear terms. J Funct Anal 90:237–283

    Article  MathSciNet  MATH  Google Scholar 

  49. Crandall MG, Lions PL (1991) Hamilton Jacobi equation in infinite dimensions V: Unbounded linear terms and B‑continuous solutions. J Funct Anal 97:417–465

    Article  MathSciNet  MATH  Google Scholar 

  50. Curtain RF, Weiss G (1989) Well posedness of triples of operators (in the sense of linear systems theory). Control and Estimation of Distributed Parameter Systems (Vorau, 1988). Internat. Ser. Numer. Math., vol. 91, Birkhäuser, Basel

    Google Scholar 

  51. Curtain RF, Zwart H (1995) An introduction to infinite‐dimensional linear systems theory. Texts in Applied Mathematics, vol 21. Springer, New York

    Book  Google Scholar 

  52. Da Prato G, Frankowska H (2007) Stochastic viability of convex sets. J Math Anal Appl 333(1):151–163

    Article  MathSciNet  MATH  Google Scholar 

  53. Dafermos CM(1970) Asymptotic stability inviscoelasticity. Arch Ration Mech Anal 37:297–308

    Article  MathSciNet  MATH  Google Scholar 

  54. Dafermos CM (1970) An abstract Volterra equation with applications to linear viscoelasticity. J Differ Equ 7:554–569

    Article  MathSciNet  MATH  Google Scholar 

  55. Engel KJ, R Nagel R (2000) One‐parameter semigroups for linear evolution equations. Springer, New York

    MATH  Google Scholar 

  56. Eller M, Lagnese JE, Nicaise S (2002) Decay rates for solutions of a Maxwell system with nonlinear boundary damping. Comp Appl Math 21:135–165

    MathSciNet  MATH  Google Scholar 

  57. Fabre C, Puel J-P, Zuazua E (1995) Approxiamte controllability of the semilinear heat equation. Proc Roy Soc Edinburgh Sect A 125(1):31–61

    Article  MathSciNet  MATH  Google Scholar 

  58. Fattorini HO, Russell DL (1971) Exact controllability theorems for linear parabolic equations in one space dimension. Arch Rat Mech Anal 4:272–292

    MathSciNet  Google Scholar 

  59. Fattorini HO (1998) Infinite Dimensional Optimization and Control theory. Encyclopedia of Mathematics and its Applications, vol 62. Cambridge University Press, Cambridge

    Google Scholar 

  60. Fattorini HO (2005) Infinite dimensional linear control systems. North‐Holland Mathematics Studies, vol 201. Elsevier Science B V, Amsterdam

    Google Scholar 

  61. Fernández‐Cara E, Zuazua E (2000) Null and approximate controllability for weakly blowing up semilinear heat equations. Ann Inst H Poincaré Anal Non Linéaire 17(5):583–616

    Google Scholar 

  62. Fernández‐Cara E, Zuazua E (2000) The cost approximate controllability for heat equations: The linear case. Adv Differ Equ 5:465–514

    Google Scholar 

  63. Fernández‐Cara E, Guerrero S, Imanuvilov OY, Puel J-P (2004) Local exact controllability of the Navier–Stokes system. J Math Pures Appl 83(9–12):1501–1542

    Google Scholar 

  64. Fursikov A (2000) Optimal control of distributed systems. Theory and applications. Translation of Mathematical Monographs, vol 187. American Mathematical Society, Providence

    Google Scholar 

  65. Fursikov A, Imanuvilov OY (1996) Controllability of evolution equations. Lecture Notes, Research Institute of Mathematics, Seoul National University, Seoul

    Google Scholar 

  66. Gibson JS (1980) A note on stabilization of infinite dimensional linear oscillators by compact linear feedback. SIAM J Control Optim 18:311–316

    Article  MathSciNet  MATH  Google Scholar 

  67. Giorgi C, Naso MG, Pata V (2005) Energy decay of electromagnetic systems with memory. Math Models Methods Appl Sci 15(10):1489–1502

    Article  MathSciNet  MATH  Google Scholar 

  68. Glass O (2000) Exact boundary controllability of 3-D Euler equation. ESAIM Control Optim Calc Var 5:1–44

    Article  MathSciNet  MATH  Google Scholar 

  69. Glass O (2007) On the controllability of the 1-D isentropic Euler equation. J Eur Math Soc (JEMS) 9(3):427–486

    Article  MathSciNet  MATH  Google Scholar 

  70. Guerrero S (2007) Local controllability to the trajectories of the Navier–Stokes system with nonlinear Navier‐slip boundary conditions. ESAIM Control Optim Calc Var 12(3):484–544

    Article  MathSciNet  Google Scholar 

  71. Haraux A (1978) Semi‐groupes linéaires et équations d’évolution linéaires périodiques. Publication du Laboratoire d’Analyse Numérique no 78011. Université Pierre et Marie Curie, Paris

    Google Scholar 

  72. Haraux A (1989) Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portugal Math 46(3):245–258

    MathSciNet  MATH  Google Scholar 

  73. Ho LF (1986) Observabilité frontière de l’équation des ondes. C R Acad Sci Paris Sér I Math 302(12):443–446

    MATH  Google Scholar 

  74. Komornik V (1994) Exact Controllability and Stabilization. The Multiplier Method. Collection RMA, vol 36. Masson–John Wiley, Paris–Chicester

    Google Scholar 

  75. Komornik V, Loreti P (2005) Fourier series in control theory. Springer, New York

    MATH  Google Scholar 

  76. Komornik V, Zuazua E (1990) A direct method for the boundary stabilization of the wave equation. J Math Pures Appl 69:33–54

    MathSciNet  MATH  Google Scholar 

  77. Lasiecka I, Lions J-L, Triggiani R (1986) Nonhomogeneous boundary value problems for second order hyperbolic operators. J Math Pures Appl 65(2):149–192

    MathSciNet  MATH  Google Scholar 

  78. Lasiecka I, Tataru D (1993) Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping. Differ Integral Equ 8:507–533

    MathSciNet  Google Scholar 

  79. Lasiecka I, Triggiani R (1991) Differential and algebraic Riccati equations with application to boundary/point control problems: continuous theory and approximation theory. Lecture Notes in Control & Inform Sci, vol 164. Springer, Berlin

    Book  Google Scholar 

  80. Lasiecka I, Triggiani R (2000) Control theory for partial differential equations: continuous and approximation theories. I. Encyclopedia of Mathematics and its Applications, vol 74. Cambridge University Press, Cambridge

    Google Scholar 

  81. Lasiecka I, Triggiani R (2000) Control theory for partial differential equations: continuous and approximation theories. II. Encyclopedia of Mathematics and its Applications, vol 75. Cambridge University Press, Cambridge

    Google Scholar 

  82. Le Rousseau J (2007) Carleman estimates and controllability results for the one‐dimensional heat equation with BV coefficients. J Differ Equ 233(2):417–447

    Article  MATH  Google Scholar 

  83. Lebeau G, Robbiano L (1995) Exact control of the heat equation. Comm Partial Differ Equ 20(1–2):335–356

    Article  MathSciNet  MATH  Google Scholar 

  84. Li X, Yong J (1995) Optimal control of infinite dimensional systems. Systems & Control: Foundations & Applications. Birkhäuser, Boston

    Book  Google Scholar 

  85. Lions J-L (1971) Optimal control of systems governed by partial differential equations. Springer, New-York

    Google Scholar 

  86. Lions J-L (1988) Contrôlabilité exacte et stabilisation de systèmes distribués I-II. Masson, Paris

    Google Scholar 

  87. Liu K (1997) Locally distributed control and damping for the conservative systems. SIAM J Control Optim 35:1574–1590

    Article  MathSciNet  MATH  Google Scholar 

  88. Liu Z, Zheng S (1999) Semigroups associated with dissipative systems. Chapman Hall CRC Research Notes in Mathematics, vol 398. Chapman Hall/CRC, Boca Raton

    Google Scholar 

  89. Liu WJ, Zuazua E (1999) Decay rates for dissipative wave equations. Ric Mat 48:61–75

    MathSciNet  MATH  Google Scholar 

  90. Liu Z, Rao R (2007) Frequency domain approach for the polynomial stability of a system of partially damped wave equations. J Math Anal Appl 335(2):860–881

    Article  MathSciNet  MATH  Google Scholar 

  91. Londen SO, Petzeltová H, Prüss J (2003) Global well‐posedness and stability of a partial integro‐differential equation with applications to viscoelasticity. J Evol Equ 3(2):169–201

    Google Scholar 

  92. Loreti P, Rao B (2006) Optimal energy decay rate for partially damped systems by spectral compensation. SIAM J Control Optim 45(5):1612–1632

    Article  MathSciNet  MATH  Google Scholar 

  93. Martinez P (1999) A new method to obtain decay rate estimates for dissipative systems with localized damping. Rev Mat Complut 12:251–283

    MathSciNet  MATH  Google Scholar 

  94. Martinez P, Raymond J-P, Vancostenoble J (2003) Regional null controllability for a linearized Crocco type equation. SIAM J Control Optim 42(2):709–728

    Article  MathSciNet  MATH  Google Scholar 

  95. Miller L (2002) Escape function conditions for the observation, control, and stabilization of the wave equation. SIAM J Control Optim 41(5):1554–1566

    Article  MathSciNet  Google Scholar 

  96. Muñoz Rivera JE, Peres Salvatierra A (2001) Asymptotic behaviour of the energy in partially viscoelastic materials. Quart Appl Math 59:557–578

    Google Scholar 

  97. Muñoz Rivera JE (1994) Asymptotic behaviour in linear viscoelasticity. Quart Appl Math 52:628–648

    Google Scholar 

  98. Nakao M (1996) Decay of solutions of the wave equation with a local nonlinear dissipation. Math Ann 305:403–417

    Article  MathSciNet  MATH  Google Scholar 

  99. Pazy A (1968) Semigroups of linear operators and applications to partial differential equations. Springer Berlin

    Google Scholar 

  100. Pontryagin LS (1959) Optimal regulation processes. Uspehi Mat Nauk 14(1):3–20

    MathSciNet  Google Scholar 

  101. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1962) The mathematical theory of optimal processes. Interscience Publishers John Wiley & Sons, Inc., New York–London, translated from the Russian by Trirogoff KN, edited by Neustadt LW

    Google Scholar 

  102. Propst G, Prüss J (1996) On wave equation with boundary dissipation of memory type. J Integral Equ Appl 8:99–123

    Google Scholar 

  103. Prüss J (1993) Evolutionary integral equations and applications. Monographs in Mathematics, vol 87. Birkhäuser Verlag, Basel

    Google Scholar 

  104. Raymond J-P (2006) Feedback boundary stabilization of the two‐dimensional Navier–Stokes equations. SIAM J Control Optim 45(3):790–828

    Article  MathSciNet  MATH  Google Scholar 

  105. Rosier L (1997) Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain. ESAIM Control Optim Calc Var 2:33–55

    Article  MathSciNet  MATH  Google Scholar 

  106. Rosier L (2000) Exact boundary controllability for the linear Korteweg–de Vries equation on the half-line. SIAM J Control Optim 39(2):331–351

    Article  MathSciNet  MATH  Google Scholar 

  107. Rosier L, Zhang BY (2006) Global stabilization of the generalized Korteweg–de Vries equation posed on a finite domain. SIAM J Control Optim 45(3):927–956

    Article  MathSciNet  MATH  Google Scholar 

  108. Russell DL (1978) Controllability and stabilizability theorems for linear partial differential equations: recent progress and open questions. SIAM Rev 20(4):639–739

    Article  MathSciNet  MATH  Google Scholar 

  109. Russell DL (1993) A general framework for the study of indirect damping mechanisms in elastic systems. J Math Anal Appl 173(2):339–358

    Article  MathSciNet  MATH  Google Scholar 

  110. Salamon D (1987) Infinite‐dimensional linear systems with unbounded control and observation: a functional analytic approach. Trans Am Math Soc 300(2):383–431

    MathSciNet  MATH  Google Scholar 

  111. Shimakura N (1992) Partial differential operators of elliptic type. Translations of Mathematical Monographs, vol 99- American Mathematical Society, Providence

    Google Scholar 

  112. Tataru D (1992) Viscosity solutions for the dynamic programming equations. Appl Math Optim 25:109–126

    Article  MathSciNet  MATH  Google Scholar 

  113. Tataru D (1994) A‑priori estimates of Carleman’s type in domains with boundary. J Math Pures Appl 75:355–387

    MathSciNet  Google Scholar 

  114. Tataru D (1995) Boundary controllability for conservative P.D.E. Appl Math Optim 31:257–295

    Article  MathSciNet  MATH  Google Scholar 

  115. Tataru D (1996) Carleman estimates and unique continuation near the boundary for P.D.E.’s. J Math Pures Appl 75:367–408

    MathSciNet  MATH  Google Scholar 

  116. Tataru D (1997) Carleman estimates, unique continuation and controllability for anizotropic PDE’s. Optimization methods in partial differential equations, South Hadley MA 1996. Contemp Math vol 209. Am Math Soc pp 267–279, Providence

    Google Scholar 

  117. de Teresa L (2000) Insensitizing controls for a semilinear heat equation. Comm Partial Differ Equ 25:39–72

    Article  MATH  Google Scholar 

  118. Vancostenoble J, Martinez P (2000) Optimality of energy estimates for the wave equation with nonlinear boundary velocity feedbacks. SIAM J Control Optim 39:776–797

    Article  MathSciNet  MATH  Google Scholar 

  119. Vancostenoble J (1999) Optimalité d’estimation d’énergie pour une équation des ondes amortie. C R Acad Sci Paris, 328, série I, pp 777–782

    MathSciNet  Google Scholar 

  120. Vitillaro E (2002) Global existence for the wave equation with nonlinear boundary damping and source terms. J Differ Equ 186(1):259–298

    Article  MathSciNet  Google Scholar 

  121. Zabczyk J (1992) Mathematical control theory: an introduction. Birkhäuser, Boston

    MATH  Google Scholar 

  122. Zuazua E (1989) Uniform stabilization of the wave equation by nonlinear feedbacks. SIAM J Control Optim 28:265–268

    MathSciNet  Google Scholar 

  123. Zuazua E (1990) Exponential decay for the semilinear wave equation with locally distributed damping. Comm Partial Differ Equ 15:205–235

    Article  MathSciNet  MATH  Google Scholar 

  124. Zuazua E (2006) Control and numerical approximation of the heat and wave equations. In: Sanz-Solé M, Soria J, Juan Luis V, Verdera J (eds) Proceedings of the International Congress of Mathematicians, vol I, II, III, European Mathematical Society, Madrid, pp 1389–1417

    Google Scholar 

  125. Zuazua E (2006) Controllability and observability of partial differential equations: Some results and open problems. In: Dafermos CM, Feireisl E (eds) Handbook of differential equations: evolutionary differential equations, vol 3. Elsevier/North‐Holland, Amsterdam, pp 527–621

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Alabau‐Boussouira, F., Cannarsa, P. (2012). Control of Non-linear Partial Differential Equations. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_8

Download citation

Publish with us

Policies and ethics