Skip to main content

Quantum Cryptography

  • Reference work entry
Computational Complexity

Article Outline

Glossary

Definition of the Subject

Introduction

Quantum Key Distribution: Motivation and Introduction

Security Proofs

Experimental Fundamentals

Experimental Implementation of BB84 Protocol

Other Quantum Key Distribution Protocols

Quantum Hacking

Beyond Quantum Key Distribution

Future Directions

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

One-time pad:

One‐time pad is a classical encryption algorithm invented by Gilbert Vernam in 1917. In one‐time pad algorithm, the legitimate users share a random key (e. g. a random binary string) that is not known to anyone else. The message is combined with this random key (“pad”) which is as long as the message. The key is used only once (“one‐time”). The most typical usage is in binary case, where an XOR operation is applied between the message and the key to achieve the ciphertext.Claudé Shannon proved that the one‐time pad provides perfect secrecy in 1949. The perfect secrecy is defined that the ciphertext does not give any additional information on the message.

Key distribution problem:

The key distribution problem originates from the one‐time pad encryption. The one‐time pad encryption requires that the two parties share a secret random key before the communication. This key is usually generated by one party. The key distribution problem is how to distribute this random key from one party to the other party securely. This problem is non‐solvable classically, but is solvable via quantum key distribution.

Quantum key distribution:

Quantum key distribution (QKD) is a method to distribute a random key between two parties securely. The main idea is to encode the bit value on the quantum state of certain particle (usually photon) and send the particle to the receiver. The quantum no‐cloning theorem guaranteed that any eavesdropper cannot duplicate the encoded quantum information perfectly.

BB84:

BB84 is the first and so far the most popular quantum cryptography protocol. It was proposed by C. H. Bennet and G. Brassard in 1984 [1]. In the original BB84 proposal, the quantum information is encoded on the polarizations of photons. Later BB84 was extended to the phase coding. Detailed description of BB84 protocol can be found in Sect. “Introduction”.

B92:

B92 is a quantum cryptography protocol proposed by C. H. Bennet in 1992 [2]. It uses two non‐orthogonal states (e. g. the horizontally – and 45\( { ^\circ } \) polarized photons) to denote “0” and “1”. It is simpler than BB84 protocol in implementation.

E91:

E91 is a quantum cryptography protocol proposed by A. Ekert in 1991 [3]. It is based on entangled photon pairs. E91 protocol is often used in free‐space quantum key distribution.

Uni‐directional QKD:

Uni‐directional QKD is the QKD scheme in which Alice (sender) generates the photon, encodes the quantum information on it, and sends it to Bob (receiver).

Bi‐directional QKD, or “Plug & play” QKD:

Bi‐directional QKD, or “Plug & play” QKD is the QKD scheme in which Bob generates strong laser pulses and sends them to Alice.Alice encodes her quantum information on the pulse and attenuates the pulse to single‐photon level, and sends it back to Bob through the same channel. This design can automatically compensate the phase and the polarization drifting in the channel.

Single photon source:

Single photon source is the light source that can generate a single photon on demand. A perfect single photon source should have zero probability to generate multi photons once triggered. Single photon source is required in the original BB84 protocol. However, it is no longer under absolute demand due to the discovery and implementation of decoy state QKD.

Fainted laser source:

Fainted laser source is the light source that has a standard pulsed laser source and a heavy attenuator. The average output photon number is usually set to \( { \sim0.1 } \) photon per pulse. This low average photon number is to suppress the production of multi photon signals. However, due to the poisson nature of laser source, the probability of multi photon production can never reach zero unless the laser is turned off.

Single photon detector:

Single photon detector is sensitive to the weakest light signals – signals with single photons. Most single photon detectors are threshold by means that they can only detect the arrival of one or more photons, but cannot count the number of photons within one signal.

Dark count:

Dark count is the event that the detector reports a detection while no photon actually hits it. It is a key parameter for single photon detectors.Dark count becomes important when the channel loss between the sender and the receiver is high (i. e., when very few photons can reach the receiver).

Qubit:

Qubit (or quantum bit) is the fundamental unit of quantum information. Whereas a classical bit can take value of either “0” or “1”, a qubit can take a value in any superposition of two distinguishable (i. e., orthogonal) states commonly labeled by \( { | 0 \rangle } \) and \( { | 1 \rangle } \).In other words, a (pure) qubit state can be written in the form \( { a | 0 \rangle + b | 1 \rangle } \) where a and b are complex numbers. The normalization constraint is that \( { |a|^2 + |b|^2 = 1 } \).Physically, a qubit can be encoded in any two‐level quantum system, such as the two polarization of a single photon or two atomic levels of an atom.

Bit-flip:

Bit‐flip is a typical noise in both classical and quantum communication. In quantum cryptography, a bit‐flip in the channel will transform an initial state \( | i \rangle=a| 0 \rangle+ b| 1 \rangle \) into the final state \( | f \rangle=a| 1 \rangle+b| 0 \rangle \).

Phase‐flip:

Phase‐flip is a typical noise that is unique in quantum communication. A phase‐flip in the quantum channel will transform an initial state \( | i \rangle=a| 0 \rangle+ b| 1 \rangle \) into the final state \( | f \rangle=a| 0 \rangle-b| 1 \rangle \).

Bibliography

Primary Literature

  1. Bennett CH, Brassard G (1984) In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing. IEEE, New York, pp 175–179

    Google Scholar 

  2. Bennett CH (1992) Phys Rev Lett 68:3121

    Article  MathSciNet  MATH  Google Scholar 

  3. Ekert AK (1991) Phys Rev Lett 67:661

    Article  MathSciNet  MATH  Google Scholar 

  4. Wiesner S (1983) Sigact News 15:78

    Article  Google Scholar 

  5. Vernam G (1926) J Am Inst Electr Eng 45:109

    Google Scholar 

  6. Shor PW (1997) SIAM J Sci Statist Comput 26:1484

    Article  MathSciNet  MATH  Google Scholar 

  7. Brassard and Crépeau (1996) ACM SIGACT News 27:13

    Google Scholar 

  8. Mayers D (2001) J ACM 48:351

    Article  MathSciNet  Google Scholar 

  9. Lo H-K, Chau HF (1999) Science 283:2050

    Article  Google Scholar 

  10. Bennett CH, DiVincenzo DP, Smolin JA, Wootters WK (1996) Phys Rev A 54:3824

    Article  MathSciNet  Google Scholar 

  11. Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S, Sanpera A (1996) Phys Rev Lett 77:2818

    Article  Google Scholar 

  12. Shor P, Preskill J (2000) Phys Rev Lett 85:441

    Article  Google Scholar 

  13. Biham E, Boyer M, Boykin PO, Mor T, Roychowdhury V (2000) In: STOC '00: Proceedings of the thirty‐second annual ACM symposium on Theory of computing. ACM Press, New York, pp 715–724

    Book  Google Scholar 

  14. Ben-Or M (2002) http://www.msri.org/publications/ln/msri/2002/qip/ben-or/1/index.html. Accessed 03 Nov 2008

  15. Given a density matrix, ρ, define the von Neumann entropy of ρ as \( { S(\rho)=-\sum_i\lambda_i\log_2\lambda_i=-\text{tr}\rho\log_2\rho } \) where λ i 's are eigenvalues of the density matrix ρ

    Google Scholar 

  16. http://en.wikipedia.org/wiki/Holevo's_theorem. Accessed 03 Nov 2008

  17. Renner R, Koenig R (2005) In: TCC 2005. LNCS, vol 3378. Springer, Berlin, (eprint) quant-ph/0403133

    Google Scholar 

  18. Renner R (2005) (eprint) quant-ph/0512258

    Google Scholar 

  19. Renner R (2007) Nat Phys 3:645

    Article  Google Scholar 

  20. Horodecki K, Horodecki M, Horodecki P, Oppenheim J (2005) Phys Rev Lett 94:160502

    Article  MathSciNet  Google Scholar 

  21. Horodecki K, Horodecki M, Horodecki P, Leung D, Oppenheim J (2008) IEEE Trans Inf Theory 54(6):2604–2620

    Article  MathSciNet  Google Scholar 

  22. Koashi M (2007) arXiv:0704.3661

  23. Acin A, Brunner N, Gisin N, Massar S, Pironio S, Scarani V (2007) Phys Rev Lett 98:230501

    Article  Google Scholar 

  24. Masanes L, Winter A (2006) (eprint) quant-ph/0606049. Accessed 03 Nov 2008

    Google Scholar 

  25. Gottesman D, Lo H-K (2003) IEEE Trans Inf Theory 49:457

    Article  MathSciNet  MATH  Google Scholar 

  26. Renner R, Gisin N, Kraus B (2005) Phys Rev A 72:012332

    Article  Google Scholar 

  27. Chau HF (2002) Phys Rev A 66:060302

    Article  Google Scholar 

  28. Brassard G, Salvail L (1994) Lecture Notes in Computer Science. Springer, vol 765, pp 410–423

    Google Scholar 

  29. Bennett CH, Brassard G, Crepeau C, Maurer UM (1995) IEEE Trans Info Theory 41:1915

    Article  MathSciNet  MATH  Google Scholar 

  30. Ben-Or M, Horodecki M, Leung DW, Mayers D, Oppenheim J (2005) In: Kilian J (ed) Theory of Cryptography: Second Theory of Cryptography Conference. TCC 2005. Lecture Notes in Computer Science, vol 3378. Springer, Berlin, pp 386–406

    Google Scholar 

  31. Koenig R, Renner R, Bariska A, Maurer U (2007) Phys Rev Lett 98:140502

    Article  Google Scholar 

  32. Inamori H, Lütkenhaus N, Mayers D (2007) Eur Phys J D 41:599

    Google Scholar 

  33. Gottesman D, Lo H-K, Lütkenhaus N, Preskill J (2004) Quant Info Compu 4:325

    Google Scholar 

  34. Bennett CH, Bessette F, Brassard G, Salvail L, Smolin J (1992) J Cryptogr 5:3

    MATH  Google Scholar 

  35. Townsend PD, Rarity JG, Tapster PR (1993) Electron Lett 29:634

    Article  Google Scholar 

  36. Muller A, Breguet J, Gisin N (1993) Europhys Lett 23:383

    Article  Google Scholar 

  37. Jacobs BC, Franson JD (1996) Opt Lett 21:1854

    Article  Google Scholar 

  38. Franson JD, Lives H (1994) Appl Opt 33:2949

    Article  Google Scholar 

  39. Townsend PD (1994) Electron Lett 30:809

    Article  MathSciNet  Google Scholar 

  40. Muller A, Zbinden H, Gisin N (1995) Nature 378:449

    Article  Google Scholar 

  41. Muller A, Zbinden H, Gisin N (1996) Europhys Lett 33:335

    Article  Google Scholar 

  42. Muller A, Herzog T, Hutter B, Tittel W, Zbinden H, Gisin N (1997) Appl Phys Lett 70:793

    Article  Google Scholar 

  43. Zbinden H, Gautier J-D, Gisin N, Hutter B, Muller A, Tittel W (1997) Electron Lett 33:586

    Article  Google Scholar 

  44. Stucki D, Gisin N, Guinnard O, Robordy G, Zbinden H (2002) New J Phys 4:41

    Article  Google Scholar 

  45. Lütkenhaus N (2000) Phys Rev A 61:052304

    Google Scholar 

  46. Gobby C, Yuan ZL, Shields AJ (2004) Electron Lett 40:1603

    Article  Google Scholar 

  47. Hwang WY (2003) Phys Rev Lett 91:057901

    Article  Google Scholar 

  48. Lo H-K (2004) In: Proceedings of IEEE International Symposium on Information Theory IEEE, New York, p 137

    Google Scholar 

  49. Lo H-K, Ma X, Chen K (2005) Phys Rev Lett 94:230504

    Article  Google Scholar 

  50. Ma X, Qi B, Zhao Y, Lo H-K (2005) Phys Rev A 72:012326

    Article  Google Scholar 

  51. Wang X-B (2005) Phys Rev Lett 94:230503

    Article  Google Scholar 

  52. Wang X-B (2005) Phys Rev A 72:012322

    Article  Google Scholar 

  53. Zhao Y, Qi B, Ma X, Lo H-K, Qian L (2006a) Phys Rev Lett 96:070502

    Article  Google Scholar 

  54. Zhao Y, Qi B, Ma X, Lo H-K, Qian L (2006b) In: Proceedings of IEEE International Symposium of Information Theory, IEEE, New York, pp 2094–2098

    Google Scholar 

  55. Schmitt‐Manderbach T et al (2007) Phys Rev Lett 98:010504

    Google Scholar 

  56. Rosenberg D et al (2007) Phys Rev Lett 98:010503

    Article  Google Scholar 

  57. Yuan ZL, Sharpe AW, Shields AJ (2007) Appl Phys Lett 90:011118

    Article  Google Scholar 

  58. Peng C-Z et al (2007) Phys Rev Lett 98:010505

    Article  Google Scholar 

  59. Yin Z-Q, Han Z-F, Chen W, Xu F-X, Wu Q-L, Guo G-C (2008) Chin Phys Lett 25:3547

    Article  Google Scholar 

  60. Wang Q, Karlsson A (2007) Phys Rev A 76:014309

    Article  Google Scholar 

  61. Takesue H et al (2007) Nat Photonics 1:343

    Article  Google Scholar 

  62. Villoresi P et al (2004) arXiv:quant-ph/0408067v1

  63. Stucki D, Ribordy G, Stefanov A, Zbinden H, Rarity JG, Wall T (2001) J Mod Opt 48:1967

    Article  Google Scholar 

  64. Qi B, Fung C-HF, Lo H-K, Ma X (2007a) Quant Info Compu 7:73

    MathSciNet  MATH  Google Scholar 

  65. Zhao Y, Fung C-HF, Qi B, Chen C, Lo H-K (2008) Phys Rev A 78:042333

    Article  Google Scholar 

  66. Namekata N, Fujii G, Inoue S (2007) Appl Phys Lett 91:011112

    Article  Google Scholar 

  67. Thew RT et al (2006) New J of Phys 8:32

    Article  Google Scholar 

  68. Diamanti E, Takesue H, Langrock C, Fejer MM, Yamamoto Y (2006) Opt Express 14:13073, (eprint) quant-ph/0608110

    Google Scholar 

  69. Rosenberg D et al (2006) Appl Phys Lett 88:021108

    Article  Google Scholar 

  70. Dynes JF, Yuan ZL, Sharpe AW, Shields AJ (2007) Opt Express 15:8465

    Article  Google Scholar 

  71. Mo XF, Zhu B, Han ZF, Gui YZ, Guo GC (2005) Opt Lett 30:2632

    Article  Google Scholar 

  72. Gisin N, Fasel S, Kraus B, Zbinden H, Ribordy G (2006) Phys Rev A 73:022320

    Article  Google Scholar 

  73. Zhao Y, Qi B, Lo H-K (2008) Phys Rev A 77:052327

    Article  Google Scholar 

  74. Bennett CH, Brassard G, Breidbart S, Wiesner S (1984) IBM Technical Disclosure Bulletin 26:4363

    Google Scholar 

  75. Bruss D (1998) Phys Rev Lett 81:3018

    Article  Google Scholar 

  76. Goldenberg L, Vaidman L (1995) Phys Rev Lett 75:1239

    Article  MathSciNet  MATH  Google Scholar 

  77. Lo H-K, Chau HF, Ardehali M (2005) J Cryptology 18:133

    Article  MathSciNet  MATH  Google Scholar 

  78. Gisin N, Ribordy G, Zbinden H, Stucki D, Brunner N, Scarani V (2004) arXiv:quant-ph/0411022v1

  79. Peng C-Z et al (2005) Phys Rev Lett 94:150501

    Article  Google Scholar 

  80. Ursin R et al (2007) Nat Phys 3:481

    Article  Google Scholar 

  81. Mauerer W, Silberhorn C (2007) Phys Rev A 75:050305

    Article  Google Scholar 

  82. Wang Q, Wang X-B, Guo G-C (2007) Phys Rev A 75:012312

    Article  Google Scholar 

  83. Adachi Y, Yamamoto T, Koashi M, Imoto N (2007) Phys Rev Lett 99:180503

    Article  Google Scholar 

  84. Ma X, Lo H-K (2008) New J Phys 10:073018

    Article  Google Scholar 

  85. Wang Q et al (2008) Phys Rev Lett 100:090501

    Article  Google Scholar 

  86. Mendonça F, de Brito DB, Silva JBR, Thé GAP, Ramos RV (2008) Microw Opt Tech Lett 50:236

    Google Scholar 

  87. Crosshans F, Assche GV, Wenger J, Brourl R, Cerf NJ, Grangier P (2003) Nature 421:238

    Article  Google Scholar 

  88. Lodewyck J, Debuisschert T, Tualle‐Brouri R, Grangier P (2005) Phys Rev A 72:050303

    Google Scholar 

  89. Legré M, Zbinden H, Gisin N (2006) Quant Info Compu 6:326

    Google Scholar 

  90. Qi B, Huang L-L, Qian L, Lo H-K (2007) Phys Rev A 76:052323. arXiv:0709.3666

  91. Lodewyck J et al (2007) Phys Rev A 76:042305

    Article  Google Scholar 

  92. Curty M, Zhang LLX, Lo H-K, Lütkenhaus N (2007) Quant Info Compu 7:665

    Google Scholar 

  93. Tsurumaru T (2007) Phys Rev A 75:062319

    Article  Google Scholar 

  94. Honjo T, Inoue K, Takahashi H (2004) Opt Lett 29:2797

    Article  Google Scholar 

  95. Takesue H et al (2005) New J Phys 7:232

    Article  Google Scholar 

  96. Gisin N, Fasel S, Kraus B, Zbinden H, Ribordy G (2006) Phys Rev A 73:022320

    Article  Google Scholar 

  97. Makarov V, Anisimov A, Skaar J (2006) Phys Rev A 74:022313

    Article  Google Scholar 

  98. Larsson J-Å (2002) Quant Info Compu 2:434

    Google Scholar 

  99. Fung C-HF, Qi B, Tamaki K, Lo H-K (2007) Phys Rev A 75:032314

    Article  Google Scholar 

  100. Lamas‐Linares A, Kurtsiefer C (2007) Opt Express 15:9388

    Google Scholar 

  101. Makarov V (2007) arXiv:0707.3987v1

  102. Kilian J (1988) In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing. ACM, New York, pp 20–31

    Google Scholar 

  103. Yao AC-C (1995) In: Proceedings of the 26th Annual ACM Symposium on the Theory of Computing. ACM, New York, p 67

    Google Scholar 

  104. Brassard RJG, Crépeau C, Langlois D (1993) In: Proceedings of the 34th Annual IEEE Symposium on the Foundations of Computer Science. IEEE, New York, p 362

    Google Scholar 

  105. Mayers D (1997) Phys Rev Lett 78:3414

    Article  Google Scholar 

  106. Lo H-K, Chau HF (1997) Phys Rev Lett 78:3410

    Article  Google Scholar 

  107. Lo H-K (1997) Phys Rev A 56:1154

    Article  Google Scholar 

  108. Lo H-K, Chau HF (1997) Physica D 120:177

    Article  MathSciNet  Google Scholar 

  109. Mochon C (2005) Phys Rev A 72:022341

    Article  Google Scholar 

  110. Cleve R, Gottesman D, Lo H-K (1999) Phys Rev Lett 83:648

    Article  Google Scholar 

  111. Ben-Or M, Crépeau C, Gottesman D, Hassidim A, Smith A (2006) In: Proceedings of 47th Annual IEEE Symposium on the Foundations of Computer Science (FOCS'06). IEEE, New York, pp 249–260

    Google Scholar 

  112. Gottesman D, Chuang I (2001) arXiv:quant-ph/0105032v2

  113. Hillery M, Bužek V, Berthiaume A (1999) Phys Rev A 59:1829

    Google Scholar 

  114. Alleaume R et al (2007) quant-ph/0701168. Accessed 03 Nov 2008

    Google Scholar 

Books and Reviews

  1. Brassard G (1994) A Bibliography of Quantum Cryptography. http://www.cs.mcgill.ca/~crepeau/CRYPTO/Biblio-QC.html. Accessed 03 Nov 2008

  2. Gisin N, Thew R (2007) Quantum Communication. Nat Photon 1(3):165–171.On‐line available at http://arxiv.org/abs/quant-ph/0703255. Accessed 03 Nov 2008

  3. Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum Cryptography.Rev Mod Phys 74:145–195. On‐line Available at http://arxiv.org/abs/quant-ph/0101098. Accessed 03 Nov 2008

  4. Gottesman D, Lo H-K (2000) From Quantum Cheating to Quantum Security. Physics Today, Nov 2000, p 22

    Google Scholar 

  5. Lo H-K, Lütkenhaus N (2007) Quantum Cryptography: from theory to practice Invited paper for Physics In Canada, Sept-Dec 2007. On‐line available at http://arxiv.org/abs/quant-ph/0702202. Accessed 03 Nov 2008

  6. Scarani V, Bechmann H‐Pasquinucci, Cerf NJ, Dusek M, Lütkenhaus N, Peev M (2008) The security of practical quantum key distribution. arXiv:0802.4155v2

  7. Wikipedia (2008) Quantum Cryptography, http://en.wikipedia.org/wiki/Quantum_cryptography. Accessed 03 Nov 2008

Download references

Acknowledgments

We thank various funding agencies including NSERC, CRC program, QuantumWorks, CIFAR, MITACS, CIPI, PREA, CFI, and OIT for their financialsupport.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Lo, HK., Zhao, Y. (2012). Quantum Cryptography. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_151

Download citation

Publish with us

Policies and ethics