Skip to main content

Robot Grasp Control

Introduction

Grasp control refers to the art of controlling the motion of an object by constraining its dynamics through contacts with a hand. The process of controlling the grasp is not limited to robotic hands only but also applies to human hands (Johansson and Edin 1991) and to all other mechanisms using contact constraints to control the motion of the manipulated object (Brost and Goldberg 1996).

A crucial role in the control of grasping is played by contact constraints. All the interactions between the robotic hand and the grasped object occur at the contacts whose understanding is paramount (Salisbury and Roth 1983). The unilateral nature of contact interaction in grasping makes the control problems much more challenging than cooperative manipulation where multiple arms hold the object rigidly allowing bilateral force transmission at each contact point (Chiacchio et al. 1991).

The importance of unilateral contact constraints in grasping led a large part of the literature to focus...

This is a preview of subscription content, log in via an institution.

Bibliography

  • Bicchi A (1995) On the closure properties of robotic grasping. Int J Robot Res 14(4):319–334

    Article  Google Scholar 

  • Bicchi A, Kumar V (2000) Robotic grasping and contact: a review. In: Proceedings of the IEEE international conference on robotics and automation, San Francisco, pp 348–353

    Google Scholar 

  • Bicchi A, Prattichizzo D (1998) Manipulability of cooperating robots with passive joints. In: Proceedings of the IEEE international conference on robtotics and automation, Leuven, pp 1038–1044

    Google Scholar 

  • Birglen L, Gosselin CM, Laliberté T (2008) Underactuated robotic hands, vol 40. Springer, Berlin

    MATH  Google Scholar 

  • Brost RC (1991) Analysis and planning of planar manipulation tasks. Carnegie Mellon University Pittsburgh, PA, USA 1992. PhD thesis

    Google Scholar 

  • Brost RC, Goldberg KY (1996) A complete algorithm for designing planar fixtures using modular components. IEEE Trans Robot Autom 12(1):31–46

    Article  Google Scholar 

  • Chen IM, Burdick JW (1993) Finding antipodal point grasps on irregularly shaped objects. IEEE Trans Robot Autom 9(4):507–512

    Article  Google Scholar 

  • Cherif M, Gupta KK (1999) Planning quasi-static fingertip manipulation for reconfiguring objects. IEEE Trans Robot Autom 15(5):837–848

    Article  Google Scholar 

  • Chiacchio P, Chiaverini S, Sciavicco L, Siciliano B (1991) Global task space manipulability ellipsoids for multiple-arm systems. IEEE Trans Robot Autom 7(5):678–685

    Article  Google Scholar 

  • Ferrari C, Canny J (1992) Planning optimal grasps. In: Proceedings of the IEEE international conference on robtotics and automation, Nice. IEEE, pp 2290–2295

    Google Scholar 

  • Goldfeder C, Ciocarlie M, Peretzman J, Hao Dang, Allen PK (2009) Data-driven grasping with partial sensor data. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2009), St. Louis, pp 1278–1283

    Google Scholar 

  • Han L, Li Z, Trinkle JC, Qin Z, Jiang S (2000) The planning and control of robot dexterous manipulation. In: Proceedings of the IEEE international conference on robotics and automation, San Francisco, pp 263–269

    Google Scholar 

  • Han L, Trinkle JC (1998) Dextrous manipulation by rolling and finger gaiting. In: Proceedings of the IEEE international conference on robtotics and automation, Leuven, vol 1. IEEE, pp 730–735

    Google Scholar 

  • Hanafusa H, Asada H (1979) Handling of constrained objects by active elastic fingers and its applications to assembly. Trans Soc Instrum Control Eng 15(1):61–66

    Article  Google Scholar 

  • Higashimori M, Kimura M, Ishii I, Kaneko M (2007) Friction independent dynamic capturing strategy for a 2D stick-shaped object. In: Proceedings of the IEEE international conference on robotics and automation, Roma, pp 217–224

    Google Scholar 

  • Jameson J (1985) Analytic techniques for automated grasp. Department of Mechanical Engineering, Stanford University. PhD thesis

    Google Scholar 

  • Jen F, Shoham M, Longman RW (1996) Liapunov stability of force-controlled grasps with a multi-fingered hand. Int J Robot Res 15(2):137–154

    Article  Google Scholar 

  • Johansson RS, Edin BB (1991) Mechanisms for grasp control. In: Pedotti A, Ferrarin M (eds) Restoration of walking for paraplegics. Recent advancements and trends, 3rd edn. Edizioni Pro Juventute/IOS, Milano, pp 57–65

    Google Scholar 

  • Li Z, Hsu P, Sastry S (1989) Grasping and coordinated manipulation by a multifingered robot hand. Int J Robot Res 8(4):33–50

    Article  Google Scholar 

  • Lynch K (1996) Nonprehensile manipulation: mechanics and planning. Carnegie Mellon University School of Computer Science, March. PhD thesis

    Google Scholar 

  • Mason MT (1982) Manipulator grasping and pushing operations. PhD thesis, Massachusetts Institute of Technology, June 1982. Reprinted in Robot hands and the mechanics of manipulation. MIT, Cambridge

    Google Scholar 

  • Mason MT, Salisbury JK (1985) Robot hands and the mechanics of manipulation. MIT, Cambridge

    Google Scholar 

  • Montana DJ (1988) The kinematics of contact and grasp. Int J Robot Res 7(3):17–32

    Article  Google Scholar 

  • Murray RM, Li Z, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC, Boca Raton

    MATH  Google Scholar 

  • Namiki A, Imai Y, Ishikawa M, Kaneko M (2003) Development of a high-speed multifingered hand system and its application to catching. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Las Vegas, vol 3. IEEE, pp 2666–2671

    Google Scholar 

  • Nguyen V (1988) Constructing force-closure grasps. Int J Robot Res 7(3):3–16

    Article  Google Scholar 

  • Okamura AM, Smaby N, Cutkosky MR (2000) An overview of dexterous manipulation. In: Proceedings of the IEEE international conference on robotics and automation, San Francisco, pp 255–262

    Google Scholar 

  • Park YC, Starr GP (1992) Grasp synthesis of polygonal objects using a three-fingered robot hand. Int J Robot Res 11(3):163–184

    Article  Google Scholar 

  • Peshkin MA, Sanderson AC (1988) Planning robotic manipulation strategies for workpieces that slide. IEEE J Robot Autom 4(5):524–531

    Article  Google Scholar 

  • Pollard NS (1997) Parallel algorithms for synthesis of whole-hand grasps. In: Proceedings of the IEEE international conference on robotics and automation, Albuquerque

    Google Scholar 

  • Prattichizzo D, Bicchi A (1997) Consistent task specification for manipulation systems with general kinematics. J Dyn Syst Meas Control 119(4):760–767

    Article  MATH  Google Scholar 

  • Prattichizzo D, Malvezzi M, Gabiccini M, Bicchi A (2012) On the manipulability ellipsoids of underactuated robotic hands with compliance. Robot Auton Syst 60(3):337–346. Elsevier

    Google Scholar 

  • Prattichizzo D, Malvezzi M, Gabiccini M, Bicchi A (2013) On motion and force controllability of precision grasps with hands actuated by soft synergies. IEEE Trans Robot 29(6):1440–1456

    Article  Google Scholar 

  • Prattichizzo D, Trinkle JC (2008) Grasping. In: Siciliano B, Kathib O (eds) Handbook of robotics. Springer, Berlin, pp 671–700

    Chapter  Google Scholar 

  • Reuleaux F (1876) The kinematics of machinery. Macmillan, London. Republished by Dover, New York, 1963

    Google Scholar 

  • Roa MA, Suarez R (2009) Computation of independent contact regions for grasping 3-D objects. IEEE Trans Robot 25(4):839–850

    Article  Google Scholar 

  • Salisbury JK, Roth B (1983) Kinematic and force analysis of articulated mechanical hands. J Mech Trans Autom Des 105(1):35–41

    Article  Google Scholar 

  • Saxena A, Driemeyer J, Ng AY (2008) Robotic grasping of novel objects using vision. Int J Robot Res 27(2):157–173

    Article  Google Scholar 

  • Shimoga KB (1996) Robot Grasp synthesis algorithms: a survey. Int J Robot Res 15(3):230–266

    Article  Google Scholar 

  • Wimboeck T, Ott C, Albu-Schaffer A, Hirzinger G (2011) Comparison of object-level grasp controllers for dynamic dexterous manipulation. Int J Robot Res 31(1):3–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Prattichizzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Prattichizzo, D. (2014). Robot Grasp Control. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_171-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_171-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Robot Grasp Control
    Published:
    18 April 2020

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_171-2

  2. Original

    Robot Grasp Control
    Published:
    28 November 2014

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_171-1