Skip to main content
  • 133 Accesses

Definition of the Subject

Gaseous and volatile chemical species reside not only in the atmosphere. Because they dissolve in water, they are also distributed in the hydrosphere . The by far largest part of the hydrosphere is the ocean. Therefore, the exchange between atmosphere and oceans is the most important process for the fate of gaseous and volatile chemical species (Table 1).

Atmosphere-Water Exchange. Table 1 Comparison of size (as depth in m over entire earth surface) and mass of atmosphere and global water storage

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Bulk coefficients:

c i relate the transfer velocity k for a species i to the wind velocity U r in a reference height, typically at 10 m above the mean water level: c i = k i /U r . From the bulk coefficient, the flux density j i of a species can be computed as j i = c i (C r C 0)U r , where C r and C 0 are the corresponding concentrations at the reference height and right at the water surface, respectively. For momentum density (ρU) the bulk coefficients is also known as the drag coefficient c D . It can also be expressed as c D = (u /U r )2 with the momentum flux given by \(j_m = \rho u_{\ast}^2\); u is the friction velocity.

Friction velocity:

u is a measure for the tangential force per area applied by the wind at the water surface, the shear stress \(\tau = \rho u_*^2\), which is also equal to the vertical momentum flux density j m .

Mass boundary layer:

Thickness of the layers at both sides of the water surface in which transport of mass by turbulence is smaller than by molecular diffusion.

Schmidt and Prandtl numbers, Sc and Pr:

The Schmidt and Prandtl numbers are the ratio of kinematic viscosity ν (molecular diffusion coefficient for momentum) and the molecular diffusion coefficients for the corresponding chemical species, D, and heat, D h , respectively. Thus, these numbers express how much slower chemical species and heat, respectively, are transported by molecular processes than momentum. In air, these numbers are in the order of one; in water, the Prandtl number is about 10 and the Schmidt number about 1,000.

Transfer velocity:

k is the velocity by which a momentum, heat, and chemical are transported across the surface; because of the concentration discontinuity at the water surface, the transfer velocity on the air side is different from the transfer velocity on the water side.

Viscous boundary layer:

Thickness of the layers at both sides of the water surface in which transport of momentum by turbulent is smaller than by molecular friction, resulting in a linear velocity profile in this layer.

Bibliography

Primary Literature

  1. Bohr C (1899) Definition und methode zur bestimmung der invasions- und evasionscoefficienten bei der auflösung von gasen in flüssigkeiten. Werthe der genannten constanten sowie der absorptionscoefficienten der kohlensäure bei auflösung in wasser und in chlornatriumlösungen. Ann Phys Chem 68:500–525

    Google Scholar 

  2. Bolin B (1960) On the exchange of carbon dioxide between the atmosphere and the sea. Tellus 12(3):274–281. ISSN 2153-3490

    Article  Google Scholar 

  3. Revelle R, Suess HE (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18–27

    Article  CAS  Google Scholar 

  4. Jähne B (1982) Dry deposition of gases over water surfaces (gas exchange). In: Flothmann D (ed) Exchange of air pollutants at the air-earth interface (dry deposition). Battelle Institute, Frankfurt

    Google Scholar 

  5. Jähne B (2009) Air-sea gas exchange. In: Steele JH, Turekian KK, Thorpe SA (eds) Encyclopedia ocean sciences. Elsevier, Boston, pp 3434–3444

    Google Scholar 

  6. Jähne B, Haußecker H (1998) Air-water gas exchange. Annu Rev Fluid Mech 30:443–468

    Article  Google Scholar 

  7. Reichardt H (1951) Vollständige darstellung der turbulenten geschwindigkeitsverteilung in glatten leitungen. Z Angew Math Mech 31:208–219

    Article  Google Scholar 

  8. Peng TH, Broecker WS, Mathieu GG, Li Y-H, Bainbridge A (1979) Radon evasion rates in the Atlantic and Pacific oceans as determined during the geosecs program. J Geophys Res 84(C5):2471–2487

    Article  CAS  Google Scholar 

  9. Roether W, Kromer B (1984) Optimum application of the radon deficit method to obtain air–sea gas exchange rates. In: Brutsaert W, Jirka GH (eds) Gas transfer at water surfaces. Reidel, Hingham, pp 447–457

    Google Scholar 

  10. Watson AJ, Upstill-Goddard RC, Liss PS (1991) Air-sea exchange in rough and stormy seas measured by a dual tracer technique. Nature 349(6305):145–147

    Article  CAS  Google Scholar 

  11. Liss PS, Merlivat L (1986) Air-sea gas exchange rates: introduction and synthesis. In: Buat-Menard P (ed) The role of air-sea exchange in geochemical cycling. Reidel, Boston, pp 113–129

    Chapter  Google Scholar 

  12. Deacon EL (1977) Gas transfer to and across an air-water interface. Tellus 29:363–374

    Article  CAS  Google Scholar 

  13. Frew NM (1997) The role of organic films in air-sea gas exchange. In: Liss PS, Duce RA (eds) The sea surface and global change. Cambridge University Press, Cambridge, pp 121–171

    Chapter  Google Scholar 

  14. Jacobs C, Nightingale P, Upstill-Goddard R, Kjeld JF, Larsen S, Oost W (2002) Comparison of the deliberate tracer method and eddy covariance measurements to determine the air/sea transfer velocity of CO2. In: Saltzman E, Donelan M, Drennan W, Wanninkhof R (eds) Gas transfer at water surfaces. Geophysical Monograph, vol 127. American Geophysical Union

    Chapter  Google Scholar 

  15. Jähne B (1980) Zur Parametrisierung des Gasaustauschs mit Hilfe von Laborexperimenten. Dissertation, Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg, http://d-nb.info/810123614. IUP D-145

  16. Jähne B (1987) Image sequence analysis of complex physical objects: nonlinear small scale water surface waves. In: Proceedings of 1st international conference on computer vision, London, pp 191–200

    Google Scholar 

  17. Jähne B (1991) New experimental results on the parameters influencing air-sea gas exchange. In: Wilhelms SC, Gulliver JS (eds) Air-water mass transfer, Selected papers from the 2nd international symposium on gas transfer at water surfaces, Minneapolis, 11–14 Sep 1990. ASCE, pp 582–592

    Google Scholar 

  18. Jähne B, Heinz G, Dietrich W (1987) Measurement of the diffusion coefficients of sparingly soluble gases in water. J Geophys Res 92(C10):10,767–10,776

    Article  Google Scholar 

  19. Keeling RF (1993) On the role of large bubbles in air-sea gas exchange and supersaturation in the ocean. J Marine Res 51:237–271

    Article  CAS  Google Scholar 

  20. King DB, Bryun WJD, Zheng M, Saltzman ES (1995) Uncertainties in the molecular diffusion coefficient of gases in water for use in the estimation of air-sea exchange. In: Jähne B, Monahan E (eds) Air-water gas transfer, Selected papers, 3rd international symposium on air-water gas transfer. AEON, Hanau, pp 13–22

    Google Scholar 

  21. McKenna SP, Bock EJ (2006) Physicochemical effects of the marine microlayer on air-sea gas transport. In Gade M, Hühnerfuss H, Korenowski GM (eds) Marine surface films: chemical characteristics, influence on air-sea interactions, and remote sensing. Springer, Berlin/Heidelberg, pp 77–91

    Google Scholar 

  22. Sündermann J (ed) (1986) Landolt-Börnstein, vol V 3c, Oceanography. Springer, Heidelberg

    Google Scholar 

  23. Torgersen T, Top Z, Clarke WB, Jenkins WJ (1977) A new method for physical limnology-tritium-helium-3 ages results for Lakes Erie, Huron, and Ontario. Limnol Oceanogr 22:181–193

    Article  CAS  Google Scholar 

  24. Tschiersch J, Jähne B (1980) Gas Exchange trough a rough water surface in a circular windtunnel; Wave characteristics under limited and unlimited fetch. In: Broecker HC, Hasse L (eds) Berichte aus dem Sonderforschungsbereich 94 Meeresforschung – Symposium on capillary waves and gas exchange, Trier, 2–6 July 1979, number 17. Univ. Hamburg, pp 63–70

    Google Scholar 

  25. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382

    Article  Google Scholar 

  26. Woolf D, Leifer I, Nightingale P, Rhee T, Bowyer P, Caulliez G, de Leeuw G, Larsen S, Liddicoat M, Baker J, Andreae M (2007) Modelling of bubble-mediated gas transfer: fundamental principles and a laboratory test. J Marine Syst 66:71–91

    Article  Google Scholar 

Books and Reviews

  • Banner ML (ed) (1999) The wind-driven air-sea interface, electromagnetic and acoustic sensing, wave dynamics and turbulent fluxes, proceedings of the symposium Sydney, Australia, 11–15 January 1999. University of New South Wales, Sydney

    Google Scholar 

  • Bengtsson LO, Hammer CU (eds) (2001) Geosphere-biosphere interactions and climate. Cambridge University Press, Cambridge

    Google Scholar 

  • Borges AV, Wanninkhof R (2007) Fifth international symposium on gas transfer at water surfaces. J Mar Syst 66(1–4):1–308

    Article  Google Scholar 

  • Brasseur GP, Prinn RG, Pszenny AA (eds) (2003) Atmospheric chemistry in a changing world. An integration and synthesis of a decade of tropospheric chemistry research. Springer, Berlin

    Google Scholar 

  • Brutsaert W, Jirka GH (eds) (1984) Gas transfer at water surfaces. Reidel, Dordrecht

    Google Scholar 

  • Csanady GT (2001) Air-sea interaction, laws and mechanisms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cussler EL (2009) Diffusion – mass transfer in fluid systems, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Danckwerts PV (1970) Gas-liquid reactions. MacGraw-Hill, New York

    Google Scholar 

  • Davies JT (1972) Turbulence phenomena. An introduction to the eddy transfer of momentum, mass, and heat, particularly at interfaces. Academic, New York/London

    Google Scholar 

  • Davies JT, Rideal EK (1963) Interfacial phenomena, 2nd edn. Acadamic, New York

    Google Scholar 

  • Dobson F, Hasse L, Davis R (eds) (1980) Air-sea interaction: instruments and methods. Plenum, New York

    Google Scholar 

  • Donelan MA, Hui WH, Plant WJ (eds) (1996) The air-sea interface, radio and acoustic sensing, turbulence and wave dynamics, proceedings of the symposium, Marseille, France, 24–30 June 1993. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

    Google Scholar 

  • Donelan MA, Drennan WM, Saltzman ES, Wanninkhof R (eds) (2002) Gas transfer at water surfaces. American Geophysical Union, Washington, DC

    Google Scholar 

  • Emerson SR, Hedges J (2008) Chemical oceanography and the marine carbon cycle. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Favre A, Hasselmann K (eds) (1978) Turbulent fluxes through the sea surface, wave dynamics, and prediction, proceedings of the symposium, Marseille, 1977. Plenum, New York

    Google Scholar 

  • Fogg PGT, Sangster J (2003) Chemicals in the atmosphere: solubility, sources, and reactivity. Wiley, Chichester

    Google Scholar 

  • Gade M, Hühnerfuss H, Korenowski GM (eds) (2005) Marine surface films: chemical characteristics, influence on air-sea interactions and remote sensing. Springer, Berlin

    Google Scholar 

  • Garbe CS, Handler RA, Jähne B (eds) (2007) Transport at the air sea interface – measurements, models and parameterizations. Springer, Berlin

    Google Scholar 

  • Gulliver JS (2007) Introduction to chemical transport in the environment. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jähne B, Monahan EC (eds) (1995) Air-water gas transfer – selected papers from the third international symposium on air-water gas transfer. AEON Verlag & Studio Hanau. http://d-nb.info/946682526

  • Kantha LH, Clayson CA (2000) Small scale processes in geophysical fluid flows, vol 67, International geophysics series. Acadamic, San Diego

    Book  Google Scholar 

  • Komori S, McGillis W (eds) (2011) Gas transfer at water surfaces, selected papers from the 6th international symposium. Kyoto University Press, Kyoto

    Google Scholar 

  • Kraus EB, Businger JA (1994) Atmosphere-ocean interaction, vol 27, 2nd edn, Oxford monographs on geology and geophysics. Oxford University Press, New York

    Google Scholar 

  • Liss PS, Duce RA (eds) (2005) The sea surface and global change. Cambridge University Press, Cambridge

    Google Scholar 

  • Robinson IS (2010) Discovering the ocean from space – the unique applications of satellite oceanography. Springer, Heidelberg

    Book  Google Scholar 

  • Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, Princeton

    Google Scholar 

  • Soloviev A, Lukas R (2006) The near-surface layer of the ocean, vol 31, Atmospheric and oceanographic sciences library. Springer, Dordrecht

    Google Scholar 

  • Wanninkhof R, Asher WE, Ho DT, Sweeney C, McGillis WR (2009) Advances in quantifying air-sea gas exchange and environmental forcing. Annu Rev Mar Sci 1:213–244

    Article  Google Scholar 

  • Wilhelms SC, Gulliver JS (eds) (1991) Air-water mass transfer – selected papers from the 2nd international symposium on gas transfer at water surfaces, Minneapolis Minnesota, September 11–14, 1990. American Society of Civil Engineers, New York

    Google Scholar 

  • Zeebe RE, Wolf-Gladrow DA (2001) CO2 in seawater: equilibrium, kinetics, isotopes, vol 65, Elsevier oceanography series. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Jähne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Jähne, B. (2012). Atmosphere-Water Exchange . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_644

Download citation

Publish with us

Policies and ethics