Skip to main content

Pedestrian, Crowd and Evacuation Dynamics

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

The modeling of pedestrian motion is of great theoretical and practical interest. Recentexperimental efforts have revealed quantitative details of pedestrian interactions, which have been successfully cast into mathematicalequations. Furthermore, corresponding computer simulations of large numbers of pedestrians have been compared with the empirically observed dynamics ofcrowds. Such studies have led to a deeper understanding of how collective behavior on a macroscopic scale emerges from individual humaninteractions. Interestingly enough, the non-linear interactions of pedestrians lead to various complex, spatio-temporalpattern-formation phenomena. This includes the emergence of lanes of uniform walking direction, oscillations of the pedestrian flow at bottlenecks,and the formation of stripes in two intersecting flows. Such self-organized patterns of motion demonstrate that efficient, “intelligent”collective dynamics...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Collective intelligence:

Emergent functional behavior of a large number of people that results from interactions of individuals rather than from individual reasoning or global optimization.

Crowd :

Agglomeration of many people in the same area at the same time. The density of the crowd is assumed to be high enough to cause continuous interactions with or reactions to other individuals.

Crowd turbulence:

Unanticipated and unintended irregular motion of individuals into different directions due to strong and rapidly changing forces in crowds of extreme density.

Emergence:

Spontaneous establishment of a qualitatively new behavior through non-linear interactions of many objects or subjects.

Evolutionary optimization:

Gradual optimization based on the effect of frequently repeated random mutations and selection processes based on some success function (“fitness”).

Faster-is-slower effect:

This term reflects the observation that certain processes (in evacuation situations, production, traffic dynamics, or logistics) take more time if performed at high speed. In other words, waiting can often help to coordinate the activities of several competing units and to speed up the average progress.

Freezing-by-heating effect:

Noise-induced blockage effect caused by the breakdown of direction-segregated walking patterns (typically two or more “lanes” characterized by a uniform direction of motion). “Noise” means frequent variations of the walking direction due to nervousness or impatience in the crowd, e.?g. also frequent overtaking maneuvers in dense, slowly moving crowds.

Panic :

Breakdown of ordered, cooperative behavior of individuals due to anxious reactions to a certain event. Often, panic is characterized by attempted escape of many individuals from a real or perceived threat in situations of a perceived struggle for survival, which may end up in trampling or crushing of people in a crowd.

Self-organization:

Spontaneous organization (i.?e. formation of ordered patterns) not induced by initial or boundary conditions, by regulations or constraints. Self-organization is a result of non-linear interactions between many objects or subjects, and it often causes different kinds of spatio-temporal patterns of motion.

Social force:

Vector describing acceleration or deceleration effects that are caused by social interactions rather than by physical interactions or fields.

Bibliography

Primary Literature

  1. Hankin BD, Wright RA (1958) Passenger flow in subways. Operat Res Q 9:81–88

    Google Scholar 

  2. Older SJ (1968) Movement of pedestrians on footways in shopping streets. Traffic Eng Control 10:160–163

    Google Scholar 

  3. Weidmann U (1993) Transporttechnik der Fußgänger. In: Schriftenreihe des Instituts für Verkehrsplanung, Transporttechnik, Straßen- und Eisenbahnbau. Institut für Verkehrsplanung, Transporttechnik, Straßen- und Eisenbahnbau, Zürich

    Google Scholar 

  4. Fruin JJ (1971) Designing for pedestrians: A level-of-service concept. In: Highway research record, Number 355: Pedestrians. Highway Research Board, Washington DC, pp 1–15

    Google Scholar 

  5. Pauls J (1984) The movement of people in buildings and design solutions for means of egress. Fire Technol 20:27–47

    Google Scholar 

  6. Whyte WH (1988) City. Rediscovering the center. Doubleday, New York

    Google Scholar 

  7. Helbing D (1997) Verkehrsdynamik. Springer, Berlin

    MATH  Google Scholar 

  8. Helbing D, Buzna L, Johansson A, Werner T (2005) Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transport Sci 39(1):1–24

    Google Scholar 

  9. Predtetschenski WM, Milinski AI (1971) Personenströme in Gebäuden – Berechnungsmethoden für die Projektierung. Müller, Köln-Braunsfeld

    Google Scholar 

  10. Transportation Research Board (1985) Highway Capacity Manual, Special Report 209. Transportation Research Board, Washington DC

    Google Scholar 

  11. Yuhaski SJ Jr, Macgregor Smith JM (1989) Modelling circulation systems in buildings using state dependent queueing models. Queueing Syst 4:319–338

    MATH  Google Scholar 

  12. Garbrecht D (1973) Describing pedestrian and car trips by transition matrices. Traffic Q 27:89–109

    Google Scholar 

  13. Ashford N, O'Leary M, McGinity PD (1976) Stochastic modelling of passenger and baggage flows through an airport terminal. Traffic Engin Control 17:207–210

    Google Scholar 

  14. Borgers A, Timmermans H (1986) City centre entry points, store location patterns and pedestrian route choice behaviour: A microlevel simulation model. Socio-Econ Plan Sci 20:25–31

    Google Scholar 

  15. Helbing D (1993) Stochastische Methoden, nichtlineare Dynamik und quantitative Modelle sozialer Prozesse. Ph.D. thesis University of Stuttgart, 1992 (published by Shaker, Aachen)

    Google Scholar 

  16. Helbing D, Isobe M, Nagatani T, Takimoto K (2003) Lattice gas simulation of experimentally studied evacuation dynamics. Phys Rev E 67:067101

    ADS  Google Scholar 

  17. Daamen W, Hoogendoorn SP (2003) Experimental research on pedestrian walking behavior (CDROM). In: Proceedings of the 82nd annual meeting at the transportation research board, Washington DC

    Google Scholar 

  18. Isobe M, Helbing D, Nagatani T (2004) Experiment, theory, and simulation of the evacuation of a room without visibility Phys Rev E 69:066132

    Google Scholar 

  19. Seyfried A, Steffen B, Klingsch W, Boltes M (2005) The fundamental diagram of pedestrian movement revisited. J Stat Mech P10002

    Google Scholar 

  20. Kretz T, Wölki M, Schreckenberg M (2006) Characterizing correlations of flow oscillations at bottlenecks. J Stat Mech P02005

    Google Scholar 

  21. Henderson LF (1974) On the fluid mechanics of human crowd motion. Transp Res 8:509–515

    Google Scholar 

  22. Hughes RL (2002) A continuum theory for the flow of pedestrians. Transp Res B 36:507–535

    Google Scholar 

  23. Helbing D (1992) A fluid-dynamic model for the movement of pedestrians. Complex Syst 6:391–415

    MathSciNet  MATH  Google Scholar 

  24. Hoogendoorn SP, Bovy PHL (2000) Gas-kinetic modelling and simulation of pedestrian flows. Transp Res Rec 1710:28–36

    Google Scholar 

  25. Helbing D (1991) A mathematical model for the behavior of pedestrians. Behav Sci 36:298–310

    Google Scholar 

  26. Helbing D, Molnár P (1995) Social force model for pedestrian dynamics. Phys Rev E 51:4282–4286

    Google Scholar 

  27. Gipps PG, Marksjö B (1985) A micro-simulation model for pedestrian flows. Math Comp Simul 27:95–105

    Google Scholar 

  28. Bolay K (1998) Nichtlineare Phänomene in einem fluid-dynamischen Verkehrsmodell. Master's thesis, University of Stuttgart

    Google Scholar 

  29. Blue VJ, Adler JL (1998) Emergent fundamental pedestrian flows from cellular automata microsimulation. Transp Res Rec 1644:29–36

    Google Scholar 

  30. Fukui M, Ishibashi Y (1999) Self-organized phase transitions in cellular automaton models for pedestrians. J Phys Soc Japan 68:2861–2863

    ADS  Google Scholar 

  31. Muramatsu M, Irie T, Nagatani T (1999) Jamming transition in pedestrian counter flow. Physica A 267:487–498

    Google Scholar 

  32. Klüpfel H, Meyer-König M, Wahle J, Schreckenberg M (2000) Microscopic simulation of evacuation processes on passenger ships. In: Bandini S, Worsch T (eds) Theory and practical issues on cellular automata. Springer, London

    Google Scholar 

  33. Burstedde C, Klauck K, Schadschneider A, Zittartz J (2001) Simulation of pedestrian dynamics using a 2-dimensional cellular automaton. Physica A 295:507–525

    ADS  MATH  Google Scholar 

  34. Gopal S, Smith TR (1990) NAVIGATOR: An AI-based model of human way-finding in an urban environment. In: Fischer MM, Nijkamp P, Papageorgiou YY (eds) Spatial choices and processes. North-Holland, Amsterdam, pp 169–200

    Google Scholar 

  35. Reynolds CW (1994) Evolution of corridor following behavior in a noisy world. In: Cliff D, Husbands P, Meyer J-A, Wilson S (eds) From animals to animats 3: Proceedings of the third international conference on simulation of adaptive behavior. MIT Press, Cambridge, pp 402–410

    Google Scholar 

  36. Helbing D (1992) A mathematical model for attitude formation by pair interactions. Behav Sci 37:190–214

    Google Scholar 

  37. Helbing D, Molnár P, Farkas I, Bolay K (2001) Self-organizing pedestrian movement. Env Planning B 28:361–383

    Google Scholar 

  38. Klockgether J, Schwefel H-P (1970) Two-phase nozzle and hollow core jet experiments. In: Elliott DG (ed) Proceedings of the eleventh symposium on engineering aspects of magnetohydrodynamics. California Institute of Technology, Pasadena, pp 141–148

    Google Scholar 

  39. Helbing D (1992) A mathematical model for behavioral changes by pair interactions. In: Haag G, Mueller U, Troitzsch KG (eds) Economic evolution and demographic change. Formal models in social sciences. Springer, Berlin, pp 330–348

    Google Scholar 

  40. Miller NE (1944) Experimental studies of conflict. In: Mc Hunt VJ (ed) Personality and the behavior disorders, vol 1. Ronald, New York

    Google Scholar 

  41. Miller NE (1959) Liberalization of basic S-R-concepts: Extension to conflict behavior, motivation, and social learning. In: Koch S (ed) Psychology: A study of science, vol 2. McGraw Hill, New York

    Google Scholar 

  42. Lewin K (1951) Field theory in social science. Harper, New York

    Google Scholar 

  43. Helbing D (1994) A mathematical model for the behavior of individuals in a social field. J Math Sociol 19(3):189–219

    Google Scholar 

  44. Hoogendoorn S, Bovy PHL (2003) Simulation of pedestrian flows by optimal control and differential games. Optim Control Appl Meth 24(3):153–172

    MathSciNet  MATH  Google Scholar 

  45. Johansson A, Helbing D, Shukla PK (2007) Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Adv Complex Syst 10:271–288

    MathSciNet  MATH  Google Scholar 

  46. Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407:487–490

    ADS  Google Scholar 

  47. Kerridge J, Chamberlain T (2005) Collecting pedestrian trajectory data in real-time. In: Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) Pedestrian and evacuation dynamics '05. Springer, Berlin

    Google Scholar 

  48. Hoogendoorn SP, Daamen W, Bovy PHL (2003) Extracting microscopic pedestrian characteristics from video data (CDROM). In: Proceedings of the 82nd annual meeting at the transportation research board. Mira Digital, Washington DC

    Google Scholar 

  49. Teknomo K (2002) Microscopic pedestrian flow characteristics: Development of an image processing data collection and simulation model. Ph?D thesis, Tohoku University Japan

    Google Scholar 

  50. Kadanoff LP (1985) Simulating hydrodynamics: A pedestrian model. J Stat Phys 39:267–283

    MathSciNet  ADS  Google Scholar 

  51. Stanley HE, Ostrowsky N (eds) (1986) On growth and form. Nijhoff, Boston

    MATH  Google Scholar 

  52. Arns T (1993) Video films of pedestrian crowds. Stuttgart

    Google Scholar 

  53. Stølum H-H (1996) River meandering as a self-organization process. Nature 271:1710–1713

    Google Scholar 

  54. Rodríguez-Iturbe I, Rinaldo A (1997) Fractal river basins: Chance and self-organization. Cambridge University, Cambridge

    Google Scholar 

  55. Helbing D, Farkas I, Vicsek T (2000) (2000) Freezing by heating in a driven mesoscopic system. Phys Rev Lett 84:1240–1243

    ADS  Google Scholar 

  56. Schelling T (1971) Dynamic models of segregation. J Math Sociol 1:143–186

    Google Scholar 

  57. Helbing D, Platkowski T (2000) Self-organization in space and induced by fluctuations. Int J Chaos Theory Appl 5(4):47–62

    Google Scholar 

  58. Ando K, Oto H, Aoki T (1988) Forecasting the flow of people. Railw Res Rev 45(8):8–13 (in Japanese)

    Google Scholar 

  59. Smith RA, Dickie JF (eds) (1993) Engineering for crowd safety. Elsevier, Amsterdam

    Google Scholar 

  60. Drager KH, Løvås G, Wiklund J, Soma H, Duong D, Violas A, Lanérés V (1992) EVACSIM – A comprehensive evacuation simulation tool. In: The proceedings of the 1992 Emergency Management and Engineering Conference. Society for Computer Simulation, Orlando, pp 101–108

    Google Scholar 

  61. Ebihara M, Ohtsuki A, Iwaki H (1992) A model for simulating human behavior during emergency evacuation based on classificatory reasoning and certainty value handling. Microcomput Civ Engin 7:63–71

    Google Scholar 

  62. Ketchell N, Cole S, Webber DM, Marriott CA, Stephens PJ, Brearley IR, Fraser J, Doheny J, Smart J (1993) The EGRESS code for human movement and behaviour in emergency evacuations. In: Smith RA, Dickie JF (eds) Engineering for crowd safety. Elsevier, Amsterdam, pp 361–370

    Google Scholar 

  63. Okazaki S, Matsushita S (1993) A study of simulation model for pedestrian movement with evacuation and queuing, In: Smith RA, Dickie JF (eds) Engineering for crowd safety. Elsevier, Amsterdam, pp 271–280

    Google Scholar 

  64. Still GK (1993) New computer system can predict human behaviour response to building fires. Fire 84:40–41

    Google Scholar 

  65. Still GK (2000) Crowd dynamics. Ph.D. thesis, University of Warwick

    Google Scholar 

  66. Thompson PA, Marchant EW (1993) Modelling techniques for evacuation. In: Smith RA, Dickie JF (eds) Engineering for crowd safety. Elsevier, Amsterdam, pp 259–269

    Google Scholar 

  67. Løvås GG (1998) On the importance of building evacuation system components. IEEE Trans Engin Manag 45:181–191

    Google Scholar 

  68. Hamacher HW, Tjandra SA (2001) Mathematical modelling of evacuation problems: A state of the art. In: Schreckenberg M, Sharma SD (eds) Pedestrian and evacuation dynamics. Springer, Berlin, pp 227–266

    Google Scholar 

  69. Keating JP (1982) The myth of panic. Fire J 57–61, 147

    Google Scholar 

  70. Elliott D, Smith D (1993) Football stadia disasters in the United Kingdom: Learning from tragedy? Ind Env Crisis Q 7(3):205–229

    Google Scholar 

  71. Jacobs BD, 't Hart P (1992) Disaster at Hillsborough Stadium: A comparative analysis. In: Parker DJ, Handmer JW (eds) Hazard management and emergency planning, Chapt 10. James and James Science, London

    Google Scholar 

  72. Canter D (ed) (1990) Fires and human behaviour. Fulton, London

    Google Scholar 

  73. Mintz A (1951) Non-adaptive group behavior. J Abnorm Norm Soc Psychol 46:150–159

    Google Scholar 

  74. Miller DL (1985) Introduction to collective behavior (Fig. 3.3 and Chap. 9). Wadsworth, Belmont

    Google Scholar 

  75. Coleman JS (1990) Foundations of social theory, Chaps. 9 and 33. Belkamp, Cambridge

    Google Scholar 

  76. Johnson NR (1987) Panic at “The Who Concert Stampede”: An empirical assessment. Soc Probl 34(4):362–373

    Google Scholar 

  77. LeBon G (1960) The crowd. Viking, New York

    Google Scholar 

  78. Quarantelli E (1957) The behavior of panic participants Sociol Soc Res 41:187–194

    Google Scholar 

  79. Smelser NJ (1963) Theory of collective behavior. Free Press, New York

    Google Scholar 

  80. Brown R (1965) Social psychology. Free Press, New York

    Google Scholar 

  81. Turner RH, Killian LM (1987) Collective behavior, 3rd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  82. Bryan JL (1985) Convergence clusters. Fire J 27–30, 86–90

    Google Scholar 

  83. Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:1390–1396

    MathSciNet  ADS  MATH  Google Scholar 

  84. Axelrod R, Dion D (1988) The further evolution of cooperation. Science 242:1385–1390

    ADS  Google Scholar 

  85. Glance NS, Huberman BA (1994) The dynamics of social dilemmas. Scientific American 270:76–81

    Google Scholar 

  86. Kelley HH, Condry JC Jr, Dahlke AE, Hill AH (1965) Collective behavior in a simulated panic situation. J Exp Soc Psychol 1:20–54

    Google Scholar 

  87. Helbing D, Johansson A, Al-Abideen HZ (2007) The dynamics of crowd disasters: An empirical study. Phys Rev E 75:046109

    Google Scholar 

  88. Fruin JJ (1993) The causes and prevention of crowd disasters. In: Smith RA, Dickie JF (eds) Engineering for crowd safety. Elsevier, Amsterdam, pp 99–108

    Google Scholar 

  89. Ristow GH, Herrmann HJ (1994) Density patterns in two-dimensional hoppers. Phys Rev E 50:R5–R8

    ADS  Google Scholar 

  90. Wolf DE, Grassberger P (eds) (1997) Friction, arching, contact dynamics. World Scientific, Singapore

    Google Scholar 

  91. Helbing D, Johansson A, Mathiesen J, Jensen HM, Hansen A (2006) Analytical approach to continuous and intermittent bottleneck flows. Phys Rev Lett 97:168001

    ADS  Google Scholar 

  92. Ghashghaie S, Breymann W, Peinke J, Talkner P, Dodge Y (1996) Turbulent cascades in foreign exchange markets. Nature 381:767–770

    ADS  Google Scholar 

  93. Peng G, Herrmann HJ (1994) Density waves of granular flow in a pipe using lattice-gas automata. Phys Rev E 49:R1796–R1799

    ADS  Google Scholar 

  94. Radjai F, Roux S (2002) Turbulentlike fluctuations in quasistatic flow of granular media. Phys Rev Lett 89:064302

    ADS  Google Scholar 

  95. Sreenivasan KR (1990) Turbulence and the tube. Nature 344:192–193

    ADS  Google Scholar 

  96. Cates ME, Wittmer JP, Bouchaud J-P, Claudin P (1998) Jamming, force chains, and fragile matter. Phys Rev Lett 81:1841–1844

    ADS  Google Scholar 

  97. Bak P, Christensen K, Danon L, Scanlon T (2002) Unified scaling law for earthquakes. Phys Rev Lett 88:178501

    ADS  Google Scholar 

  98. Johnson PA, Jia X (2005) Nonlinear dynamics, granular media and dynamic earthquake triggering. Nature 437:871–874

    ADS  Google Scholar 

  99. Johansson A, Helbing D (2007) Pedestrian flow optimization with a genetic algorithm based on Boolean grids. In: Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) Pedestrian and evacuation dynamics 2005. Springer, Berlin, pp 267–272

    Google Scholar 

  100. Baeck T (1996) Evolutionary algorithms in theory and practice. Oxford University Press, New York

    MATH  Google Scholar 

Books and Reviews

  1. Decicco PR (ed) (2001) Evacuation from fires. Baywood, Amityville

    Google Scholar 

  2. Helbing D (2001) Traffic and related self-driven many-particle systems. Rev Mod Phys 73:1067–1141

    ADS  Google Scholar 

  3. Helbing D, Molnár P, Farkas I, Bolay K (2001) Self-organizing pedestrian movement. Environ Plan B 28:361–383

    Google Scholar 

  4. Helbing D, Buzna L, Johansson A, Werner T (2005) Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transp Sci 39(1):1–24

    Google Scholar 

  5. Le Bon G (2002) The Crowd. Dover, New York (1st edn: 1895)

    Google Scholar 

  6. Predtechenskii VM, Milinskii AI (1978) Planning for foot traffic flow in buildings. Amerind, New Delhi

    Google Scholar 

  7. Schreckenberg M, Sharma SD (eds) (2002) Pedestrian and evacuation dynamics. Springer, Berlin

    MATH  Google Scholar 

  8. Smith RA, Dickie JF (eds) (1993) Engineering for crowd safety. Elsevier, Amsterdam

    Google Scholar 

  9. Still GK (2000) Crowd Dynamics. Ph.D thesis, University of Warwick

    Google Scholar 

  10. Surowiecki J (2005) The Wisdom of Crowds. Anchor, New York

    Google Scholar 

  11. Tubbs J, Meacham B (2007) Egress design solutions: A guide to evacuation and crowd management planning. Wiley, New York

    Google Scholar 

  12. Waldau N, Gattermann P, Knoflacher H (eds) (2006) Pedestrian and evacuation dynamics 2005. Springer, Berlin

    Google Scholar 

  13. Weidmann U (1993) Transporttechnik der Fußgänger. In: Schriftenreihe des Institut für Verkehrsplanung, Transporttechnik, Straßen- und Eisenbahnbau 90. ETH Zürich

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for partial financial support by the German Research Foundation(research projects He 2789/7-1, 8-1) and by the “Cooperative Center for Communication Networks Data Analysis”, a NAP project sponsored bythe Hungarian National Office of Research and Technology under grant No. KCKHA005.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Helbing, D., Johansson, A. (2009). Pedestrian, Crowd and Evacuation Dynamics. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_382

Download citation

Publish with us

Policies and ethics