Skip to main content

Max Cut

1994; Goemans, Williamson 1995; Goemans, Williamson

  • Reference work entry

Keywords and Synonyms

Maximum bipartite subgraph    

Problem Definition

Given an undirected edge-weighted graph, \( { G=(V,E) } \), the maximum cut problem (Max-Cut) is to find a bipartition of the vertices that maximizes the weight of the edges crossing the partition. If the edge weights are non-negative, then this problem is equivalent to finding a maximum weight subset of the edges that forms a bipartite subgraph, i. e. the maximum bipartite subgraph problem. All results discussed in this article assume non-negative edge weights. Max-Cut is one of Karp's original NP-complete problems [19]. In fact, it is NP-hard to approximate to within a factor better than 16/17[16,33].

For nearly twenty years, the best-known approximation factor for Max-Cut was half, which can be achieved by a very simple algorithm: Form a set S by placing each vertex in S with probability half. Since each edge crosses the cut \( { (S, V \setminus{S}) } \)with probability half, the expected value of this cut is half...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. Andersson, G., Engebretsen, L., Håstad, J.: A new way to use semidefinite programming with applications to linear equations mod p. J. Algorithms 39, 162–204 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph partitioning. In: Proceedings of the 36th Annual Symposium on the Theory of Computing (STOC), Chicago 2004, pp. 222–231

    Google Scholar 

  3. Barahona, F.: On cuts and matchings in planar graphs. Math. Program. 60, 53–68 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blum, A., Konjevod, G., Ravi, R., Vempala, S.: Semi-definite relaxations for minimum bandwidth and other vertex‐ordering problems. Theor. Comput. Sci. 235, 25–42 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS), Boston 2003, pp. 524–533

    Google Scholar 

  6. Chor, B., Sudan, M.: A geometric approach to betweeness. SIAM J. Discret. Math. 11, 511–523 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Delorme, C., Poljak, S.: Laplacian eigenvalues and the maximum cut problem. Math. Program. 62, 557–574 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Delorme, C., Poljak, S.: The performance of an eigenvalue bound in some classes of graphs. Discret. Math. 111, 145–156 (1993). Also appeared in: Proceedings of the Conference on Combinatorics, Marseille, 1990

    Article  MathSciNet  MATH  Google Scholar 

  9. Feige, U., Schechtman, G.: On the optimality of the random hyperplane rounding technique for MAX-CUT. Random Struct. Algorithms 20(3), 403–440 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frieze, A., Jerrum, M.R.: Improved approximation algorithms for MAX-k-CUT and MAX BISECTION. Algorithmica 18, 61–77 (1997)

    Article  MathSciNet  Google Scholar 

  11. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goemans, M.X., Williamson, D.P.: Approximation algorithms for MAX-3-CUT and other problems via complex semidefinite programming. STOC 2001 Special Issue of J. Comput. Syst. Sci. 68, 442–470 (2004)

    Google Scholar 

  13. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169–197 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  15. Halperin, E., Zwick, U.: A unified framework for obtaining improved approximation algorithms for maximum graph bisection problems. Random Struct. Algorithms 20(3), 382–402 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Håstad, J.: Some optimal inapproximability results. J. ACM 48, 798–869 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karger, D.R., Motwani, R., Sudan, M.: Improved graph coloring via semidefinite programming. J. ACM 45(2), 246–265 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karloff, H.J.: How good is the Goemans‐Williamson MAX CUT algorithm? SIAM J. Comput. 29(1), 336–350 (1999)

    Google Scholar 

  19. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Complexity of Computer Computations, pp. 85–104. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  20. Khot, S.: On the power of unique 2‑prover 1-round games. In: Proceedings of the 34th Annual Symposium on the Theory of Computing (STOC), Montreal 2002, pp. 767–775

    Google Scholar 

  21. Khot, S., Kindler, G., Mossel, E., O'Donnell, R.: Optimal inapproximability results for MAX CUT and other 2‑variable CSPs? In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), Rome 2004, pp. 146–154

    Google Scholar 

  22. de Klerk, E., Pasechnik, D., Warners, J.: On approximate graph colouring and MAX-k-CUT algorithms based on the θ function. J. Combin. Optim. 8(3), 267–294 (2004)

    Article  MATH  Google Scholar 

  23. Mahajan, R., Hariharan, R.: Derandomizing semidefinite programming based approximation algorithms. In: Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science (FOCS), Milwaukee 1995, pp. 162–169

    Google Scholar 

  24. Mohar, B., Poljak, S.: Eigenvalues and the max-cut problem. Czechoslov Math. J. 40(115), 343–352 (1990)

    MathSciNet  Google Scholar 

  25. Newman, A.: A note on polyhedral relaxations for the maximum cut problem (2004). Unpublished manuscript

    Google Scholar 

  26. Poljak, S.: Polyhedral and eigenvalue approximations of the max-cut problem. Sets, Graphs and Numbers. Colloqiua Mathematica Societatis Janos Bolyai 60, 569–581 (1992)

    Google Scholar 

  27. Poljak, S., Rendl, F.: Node and edge relaxations of the max-cut problem. Comput. 52, 123–137 (1994)

    Google Scholar 

  28. Poljak, S., Rendl, F.: Nonpolyhedral relaxations of graph‐bisection problems. SIAM J. Opt. 5, 467–487 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Poljak, S., Rendl, F.: Solving the max-cut using eigenvalues. Discret. Appl. Math. 62(1–3), 249–278 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Poljak, S., Tuza, Z.: Maximum cuts and large bipartite subgraphs. DIMACS Ser. Discret. Math. Theor. Comput. Sci. 20, 181–244 (1995)

    Google Scholar 

  31. Sahni, S., Gonzalez, T.: P‑complete approximation problems. J. ACM 23(3), 555–565 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  32. Swamy, C.: Correlation clustering: maximizing agreements via semidefinite programming. In: Proceedings of 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), New Orleans 2004, pp. 526–527

    Google Scholar 

  33. Trevisan, L., Sorkin, G., Sudan, M., Williamson, D.: Gadgets, approximation, and linear programming. SIAM J. Comput. 29(6), 2074–2097 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Newman, A. (2008). Max Cut. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_219

Download citation

Publish with us

Policies and ethics