Skip to main content

The Genera Leptothrix and Sphaerotilus

  • Reference work entry

Introduction

Representatives of the genera Leptothrix and Sphaerotilus were among the first microorganisms to be recognized in the environment and described in detail by scientists. The type species of the genus Leptothrix, L. ochracea, was already observed in the late eighteenth century and described by Roth (1797) under the synonym “Conferva ochracea.” Later, Kützing (1843) proposed to place this species within the genus Leptothrix. Ten years earlier, the same author had published a description of the species Sphaerotilus natans (Kützing, 1833), which is today still known under this name. These early publications were probably evoked by the observation of ocherous deposits (clearly visible to the naked eye) in ponds or slowly running water. A microscopic examination of these suspicious aggregates led then to the discovery of filamentous microorganisms, which were obviously responsible for the deposition of iron or ferromanganese oxides in a slimy matrix, resulting in the typical...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature Cited

  • Adams, L. F., and W. C. Ghiorse. 1986 Physiology and ultrastructure of Leptothrix discophora SS-1 Arch. Microbiol. 145 126–135

    Article  CAS  Google Scholar 

  • Amann, R. I., W. Ludwig, and K.-H. Schleifer. 1995 Phylogenetic identification and in situ detection of individual microbial cells without cultivation Microbiol. Rev. 59 143–169

    PubMed  CAS  Google Scholar 

  • Brouwers, G. J., E. Vijgenboom, P. L. A. M. Corstjens, J. P. M. de Vrind, and E. W. de Vrind-de Jong. 2000 Bacterial Mn2+ oxidizing systems and multicopper oxidases: an overview of mechanisms and functions Geomicrobiol. J. 17 1–24

    Article  CAS  Google Scholar 

  • Carlile, M. J., and W. L. Dudeney. 2001 The discs of Leptothrix: Lost for 89 years Microbiology 147 1393–1394

    PubMed  CAS  Google Scholar 

  • Cataldi, M. S. 1939 Estudio fisiólogico y sistemático de algunas Chlamydobacteriales (thesis) University of Buenos Aires Buenos Aires, Argentina 1–96

    Google Scholar 

  • Charlet, E., and W. Schwartz. 1954 Beiträge zur Biologie der Eisenmikroben. I: Untersuchungen über die Lebensweise von Leptothrix ochracea und einigen begleitenden Eisenmikroben Schweiz. Z. Hydrol. 16 318–341

    Google Scholar 

  • Cholodny, N. 1926 Die Eisenbakterien. Beiträge zu einer Monographie Pflanzenforsch G. Fischer Jena, Germany 4 1–162

    Google Scholar 

  • Corstjens, P. L. A. M., J. P. M. de Vrind, P. Westbroek, and E. W. de Vrind-de Jong. 1992 Enzymatic iron-oxidation by Leptothrix discophora: identification of an iron-oxidizing protein Appl. Environ. Microbiol. 58 450–454

    PubMed  CAS  Google Scholar 

  • De Vrind-de Jong, E. W., P. L. A. M. Corstjens, E. S., Kempers, P. Westbroek, and J. P. M. de Vrind. 1990 Oxidation of manganese and iron by Leptothrix discophora: use of N,N,N′,N′-tetramethyl-p-phenylenediamine as an indicator of metal oxidation Appl. Environ. Microbiol. 56 3458–3462

    PubMed  Google Scholar 

  • Dondero, N. C. 1975 The Sphaerotilus-Leptothrix group Ann. Rev. Microbiol. 3 77–107

    Google Scholar 

  • Dymond, J., R. W. Collier, and M. E. Watwood. 1989 Bacterial mats from Crater Lake, Oregon and their relationship to possible deep-lake hydrothermal venting Nature 342 673–675

    Article  CAS  Google Scholar 

  • Eikelboom, D. H. 1975 Filamentous organisms observed in activated sludge Water Res. 9 365–388

    Article  Google Scholar 

  • Emerson, D., and W. C. Ghiorse. 1992 Isolation, cultural maintenance, and taxonomy of a sheath-forming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath Appl. Environ. Microbiol. 58 4001–4010

    PubMed  CAS  Google Scholar 

  • Emerson, D., and W. C. Ghiorse. 1993a Role of disulfide bonds in maintaining the structural integrity of the sheath of Leptothrix discophora SP-6 J. Bacteriol. 175 7819–7827

    PubMed  CAS  Google Scholar 

  • Emerson, D., and W. C. Ghiorse. 1993b Ultrastructure and chemical composition of the sheath of Leptothrix discophora SP-6 J. Bacteriol. 175 7808–7818

    PubMed  CAS  Google Scholar 

  • Emerson, D., and N. P. Revsbech. 1994 Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: field studies Appl. Environ. Microbiol. 60 4022–4031

    PubMed  CAS  Google Scholar 

  • Esposito, A., F. Pagnanelli, A. Lodi, C. Solisio, and F. Veglio. 2001 Biosorption of heavy metals by Sphaerotilus natans: An equilibrium study at different pH and biomass concentrations Hydrometallurgy 60 129–141

    Article  CAS  Google Scholar 

  • Felsenstein, J. 1982 Numerical methods for inferring phylogenetic trees Q. Rev. Biol. 57 379–404

    Article  Google Scholar 

  • Gaudy, E., and R. S. Wolfe. 1961 Factors affecting filamentous growth of Sphaerotilus natans Appl. Microbiol. 9 580–584

    PubMed  CAS  Google Scholar 

  • Gaudy, E., and R. S. Wolfe. 1962 Composition of an extracellular polysaccharide produced by Sphaerotilus natans Appl. Microbiol. 10 200–205

    PubMed  CAS  Google Scholar 

  • Ghiorse, W. C., and S. D. Chapnick. 1983 Metal-depositing bacteria and the distribution of manganese and iron in swamp waters In: R. Hallberg (Ed.) Environmental Biogeochemistry Publ. House/FRN Stockholm, Sweden Ecol. Bull. 35 367–376

    Google Scholar 

  • Ghiorse, W. C., and H. L. Ehrlich. 1992 Microbial Biomineralization of Iron and Manganese In: R. W. Fitzpatrick and H. C. W. Skinner (Eds.) Iron and manganese biomineralization processes in modern and ancient environments Catena Cremlingen-Destedt, Germany Catena Supplement 21 75–99

    Google Scholar 

  • Ghiorse, W. C., D. N. Miller, R. L. Sandoli, and P. L. Siering. 1996 Applications of laser scanning microscopy for analysis of aquatic microhabitats Microsci. Res. Tech. 33 73–86

    Article  CAS  Google Scholar 

  • Hallbeck, L., F. Ståhl, and K. Pedersen. 1993 Phylogeny and phenotypic characterization of the stalk-forming and iron-oxidizing bacterium Gallionella ferruginea J. Gen. Microbiol. 139 1531–1535

    Article  PubMed  CAS  Google Scholar 

  • Kalmbach, S., W. Manz, J. Wecke, and U. Szewzyk. 1999 Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system Int. J. Syst. Bacteriol. 49 769–777

    Article  PubMed  Google Scholar 

  • Kämpfer, P., D. Weltin, D. Hoffmeister, and W. Dott. 1995 Growth requirements of filamentous bacteria isolated from bulking and scumming sludge Water Res. 29 1585–1588

    Article  Google Scholar 

  • Kämpfer, P. 1997 Detection and cultivation of filamentous bacteria from activated sludge FEMS Microbiol. Ecol. 23 169–181

    Article  Google Scholar 

  • Kämpfer, P. 1998 Some chemotaxonomic and physiological properties of the genus Sphaerotilus Syst. Appl. Microbiol. 21 245–250

    Article  Google Scholar 

  • Kersters, K., and J. De Ley. 1984 Genus Alcaligenes Castellani and Chalmers 1919, 936AL In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. C. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology, 1st ed Williams and Wilkins Baltimore, MD 1 361–373

    Google Scholar 

  • Kützing, F. T. 1833 Beitrag zur Kenntnis über die Entstehung und Metamorphose der niederen vegetalischen Organismen, nebst einer systematischen Zusammensetzung der hierher gehörigen niederen Algenformen Linnaea 8 335–387

    Google Scholar 

  • Kützing, F. T. 1843 Phycologia Generales Leipzig, Germany

    Google Scholar 

  • Lieske, R. 1919 Zur Ernährungsphysiologie der Eisenbakterien Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. II 49 413–425

    CAS  Google Scholar 

  • Ludwig, W., and O. Strunk. 1997 ARB—a software environment for sequence data [{http://www.arb-home.de/pub/ARB/documentation/arb.ps}]

    Google Scholar 

  • Malmqvist, Å, T. Welander, E. Moore, A. Ternström, G. Molin, G., and I.-M. Stenström. 1994 Ideonella dechloratans gen. nov., sp. nov., a new bacterium capable of growing anaerobically with chlorate as an electron acceptor Syst. Appl. Microbiol. 17 58–64

    Article  Google Scholar 

  • Molisch, H. 1910 Die Eisenbakterien G. Fischer Jena, Germany 1–83

    Google Scholar 

  • Mulder, E. G., and W. L. van Veen. 1963 Investigations on the Sphaerotilus-Leptothrix group Ant. v. Leeuwenhoek 29 121–153

    Article  CAS  Google Scholar 

  • Mulder, E. G. 1989a Genus Leptothrix Kützing 1843, 198AL In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. C. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology, 1st ed Williams and Wilkins Baltimore, MD 3 1998–2003

    Google Scholar 

  • Mulder, E. G. 1989b Genus Sphaerotilus Kützing 1833, 386AL In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. C. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology, 1st ed Williams and Wilkins Baltimore, MD 3 1994–1998

    Google Scholar 

  • Mulder, E. G., and M. H. Deinema. 1992 The sheated bacteria In: A. Balows, H.-G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag Berlin, Germany 3 2612–2624

    Google Scholar 

  • Nelson, Y. M., L. W. Lion, M. L. Shuler, and W. C. Ghiorse. 1999 Lead binding to metal oxide and organic phases of natural aquatic biofilms Limnol. Oceanogr. 44 1715–1729

    Article  CAS  Google Scholar 

  • Olesen, B. H., R. Avci, and Z. Lewandowski. 2000 Manganese dioxide as a potential cathodic reactant in corrosion of stainless steels Corrosion Sci. 42 211–227

    Article  CAS  Google Scholar 

  • Palleroni, N. J. 1984 Genus I. Pseudomonas Migula 1894, 237Al In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. C. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology, 1st ed Williams and Wilkins Baltimore, MD 1 141–199

    Google Scholar 

  • Pellegrin, V., S. Juretschko, M. Wagner, and G. Cottenceau. 1999 Morphological and biochemical properties of a Sphaerotilus sp. Isolated from paper mill slimes Appl. Environ. Microbiol. 65 156–162

    PubMed  CAS  Google Scholar 

  • Phaup, J. D. 1968 The biology of Sphaerotilus species Water Res. 2 597–614

    Article  Google Scholar 

  • Präve, P. 1957 Untersuchungen über die Stoffwechselphysiologie des Eisenbakteriums Leptothrix ochracea Kützing Arch. Mikrobiol. 27 33–62

    Article  PubMed  Google Scholar 

  • Pringsheim, E. G. 1949a Iron Bacteria Biol. Rev. Cambridge Philos. Soc. 24 200–245

    Article  PubMed  CAS  Google Scholar 

  • Pringsheim, E. G. 1949b The filamentous bacteria Sphaerotilus, Leptothrix, Cladothrix, and their relation to iron and manganese Philos. Trans. R. Soc. London Ser. B. 233 453–482

    Article  Google Scholar 

  • Rao, T. S., T. N. Sairam, B. Viswanathan, and K. V. K. Nair. 2000 Carbon steel corrosion by iron oxidising and sulphate reducing bacteria in a freshwater cooling system Corrosion Sci. 42 1417–1431

    Article  CAS  Google Scholar 

  • Richard, M. G., G. P. Shimizu, and D. Jenkins. 1985 The growth physiology of the filamentous organism Type 021N and its significance to activated sludge bulking J. Water Pollut. Control Fed. 57 1152–1162

    Google Scholar 

  • Romano, A. H., and J. P. Peloquin. 1963 Composition of the sheath of Sphaerotilus natans J. Bacteriol. 86 252–258

    PubMed  CAS  Google Scholar 

  • Roth, A. W. 1797 Catalecta botanica quibus plantae novae et minus cognitae describuntur atque illistrantur Lipsiae in Bibliopolio I.G. Mulleriano fasc. 1

    Google Scholar 

  • Rouf, M. A., and J. L. Stokes. 1964 Morphology, nutrition, and physiology of Sphaerotilus discophorus Arch. Mikrobiol. 49 132–149

    Article  PubMed  CAS  Google Scholar 

  • Saitou, N., and M. Nei. 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees Molec. Biol. Evol. 4 406–425

    PubMed  CAS  Google Scholar 

  • Schwers, H. 1912 Megalothrix discophora, eine neue Eisenbakterie Zentrbl. Bakteriol. Parasitenkd. Infektkrankh. Hyg. Abt. II 33 273–276

    Google Scholar 

  • Seviour, E. M., C. Williams, B. DeGrey, J. A. Soddell, R. J. Seviour, and K. C. Lindrea. 1994 Studies on filamentous bacteria from Australian activated sludge plants Water Res. 28 2335–2342

    Article  Google Scholar 

  • Siering, P. L., and W. C. Ghiorse. 1997a Development and application of 16S rRNA-targeted probes for detection of iron-and manganese-oxidizing sheathed bacteria in environmental samples Appl. Environ. Microbiol. 63 644–651

    PubMed  CAS  Google Scholar 

  • Siering, P. L., and W. C. Ghiorse. 1997b PCR detection of a putative manganese oxidation gene (mofA) in environmental samples and assessment of mofA gene homology among diverse manganese-oxidizing bacteria Geomicrobiol. J. 14 109–125

    Article  CAS  Google Scholar 

  • Skerman, V. B. D., V. McGowan, and P. H. A. Sneath. 1980 Approved Lists of Bacterial Names Int. J. Syst. Bacteriol. 30 225–420

    Article  Google Scholar 

  • Solisio, C., A. Lodi, A. Converti, and M. Del Borghi. 2000 The effect of acid pre-treatment on the biosorption of chromium(III) by Sphaerotilus natans from industrial wastewater Water Res. 34 3171–3178

    Article  CAS  Google Scholar 

  • Sommaruga, R., and R. Psenner. 1995 Permanent presence of grazing-resistant bacteria in a hypertrophic lake Appl. Environ. Microbiol. 61 3457–3459

    PubMed  CAS  Google Scholar 

  • Spring, S., P. Kämpfer, W. Ludwig, and K.-H. Schleifer. 1996 Polyphasic characterization of the genus Leptothrix: New descriptions of Leptothrix mobilis sp. nov. and Leptothrix discophora sp. nov., nom. rev. and emended description of Leptothrix cholodnii emend Syst. Appl. Microbiol. 19 634–643

    Article  CAS  Google Scholar 

  • Stein, L. Y., M. T. La Duc, T. J. Grundi, and K. H. Nealson. 2001 Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments Environ. Microbiol. 3 10–18

    Article  PubMed  CAS  Google Scholar 

  • Stokes, J. L. 1954 Studies on the filamentous sheathed iron bacterium Sphaerotilus natans J. Bacteriol. 67 278–291

    PubMed  CAS  Google Scholar 

  • Stokes, J. L., and M. T. Powers. 1965 Formation of rough and smooth strains of Sphaerotilus discophorus Ant. v. Leeuwenhoek 31 157–164

    Article  CAS  Google Scholar 

  • Sunda, W. G., and D. J. Kieber. 1994 Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates Nature 367 62–64

    Article  CAS  Google Scholar 

  • Suyama, T., T. Shigematsu, S. Takaichi, Y. Nodasaka, S. Fujikawa, H. Hosoya, Y. Tokiwa, T. Kanagawa, and S. Hanada. 1999 Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the β-subclass of the Proteobacteria Int. J. Syst. Bacteriol. 49 449–457

    Article  PubMed  Google Scholar 

  • Takeda, M., F. Nakano, T. Nagase, K. Iohara, and J.-I. Koizumi. 1998 Isolation and chemical composition of the sheath of Sphaerotilus natans Biosci. Biotechnol. Biochem. 62 1138–1143

    Article  PubMed  CAS  Google Scholar 

  • Takeda, M., K. Iohara, S. Shinmaru, I. Suzuki, and J.-I. Koizumi. 2000 Purification and properties of an enzyme capable of degrading the sheath of Sphaerotilus natans Appl. Environ. Microbiol. 66 4998–5004

    Article  PubMed  CAS  Google Scholar 

  • Van Veen, W. L., E. G. Mulder, and M. H. Deinema. 1978 The Sphaerotilus-Leptothrix Group of Bacteria Microbiol. Rev. 42 329–356

    PubMed  Google Scholar 

  • Venosa, A. D. 1975 Lysis of Sphaerotilus natans swarm cells by Bdellovibrio bacteriovorus Appl. Microbiol. 29 702–705

    PubMed  CAS  Google Scholar 

  • Wagner, M., R. Amann, P. Kämpfer, B. Assmus, A. Hartmann, P. Hutzler, N. Springer, and K.-H. Schleifer. 1994 Identification and in situ detection of Gram-negative filamentous bacteria in activated sludge Syst. Appl. Microbiol. 17 405–417

    Article  Google Scholar 

  • Wen, A., M. Fegan, C. Hayward, S. Chakraborty, and L. I. Sly. 1999 Phylogenetic relationsships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al 1987) gen. nov., comb. nov Int. J. Syst. Bacteriol. 49 567–576

    Article  PubMed  CAS  Google Scholar 

  • Williams, M. W., and R. F. Unz. 1985 Isolation and characterization of filamentous bacteria present in bulking activated sludge Appl. Microbiol. Biotechnol. 22 273–280

    CAS  Google Scholar 

  • Winogradsky, S. 1888 Über Eisenbakterien Bot. Zeitschr. 46 261–270

    Google Scholar 

  • Winogradsky, S. 1922 Eisenbakterien als Anorgoxydanten Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. II 57 1–21

    CAS  Google Scholar 

  • Winston, V., and T. L. Thompson. 1979 Isolation and characterization of a bacteriophage specific for Sphaerotilus natans which contains an unusual base in its deoxyribonucleic acid Appl. Environ. Microbiol. 37 1025–1030

    PubMed  CAS  Google Scholar 

  • Ziegler, M., M. Lange, and W. Dott. 1990 Isolation and morphological and cytological characterization of filamentous bacteria from bulking sludge Water Res. 24 1437–1451

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Spring, S. (2006). The Genera Leptothrix and Sphaerotilus . In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30745-1_35

Download citation

Publish with us

Policies and ethics