Skip to main content

Symbiotic Associations Between Termites and Prokaryotes

  • Reference work entry

Introduction

The symbiotic associations of termites with microorganisms comprise different levels of interaction, ranging from the extracorporal cultivation of fungus gardens to the most intimate associations, where bacteria reside intracellularly in dedicated bacteriocytes. However, the majority of prokaryotic symbionts of termites are located in the intestinal tract, where they are free-swimming, attached to the gut epithelium, or associated with the intestinal protozoa (Fig. 1). Although it is suggestive that the gut microbiota of termites is directly or indirectly involved in the digestion of lignocellulose or has other nutritional implications, the exact nature of the associations and possible benefits for the partners of each particular symbiosis are often far from clear. Therefore, this chapter will use the term “symbiosis” in its broader sense, as originally defined by Anton de Bary (de Bary, 1878). A definitive classification of the associations into the different categories...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature Cited

  • Aanen, D. K., P. Eggleton, C. Rouland-Lefevre, T. Guldberg-Froslev, S. Rosendahl, and J. J. Boomsma. 2002 The evolution of fungus-growing termites and their mutualistic fungal symbionts Proc. Natl. Acad. Sci. USA 99 14887–14892

    Article  PubMed  CAS  Google Scholar 

  • Abo-Khatwa, N. 1978 Cellulase of fungus-growing termites: A new hypothesis on its origin Experientia 34 559–60

    Article  CAS  Google Scholar 

  • Amburgey, T. L., G. N. Johnson, and J. L. Etheridge. 1980 A method to mass-produce decayed-wood termite bait blocks J. Georgia Entomol. Soc. 16 112–115

    Google Scholar 

  • Anklin-Mühlemann, R., D. E. Bignell, P. C. Veivers, R. H. Leuthold, and M. Slaytor. 1995 Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus J. Insect Physiol. 41 929–940

    Article  Google Scholar 

  • Bakalidou, A., P. Kämpfer, M. Berchtold, T. Kuhnigk, M. Wenzel, and H. König. 2002 Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis Int. J. System. Evol. Microbiol. 52 1185–1192

    Article  CAS  Google Scholar 

  • Bandi, C., M. Sironi, G. Damiani, L. Magrassi, C. A. Nalepa, U. Laudani, and L. Sacchi. 1995 The establishment of intracellular symbiosis in an ancestor of cockroaches and termites Proc. R. Soc. Lond. Ser. B. Biol. Sci. 259 293–299

    Article  CAS  Google Scholar 

  • Bandi, C., M. Sironi, C. A. Nalepa, S. Corona, and L. Sacchi. 1997 Phylogenetically distant intracellular symbionts in termites Parassitologia 39 71–75

    PubMed  CAS  Google Scholar 

  • Bauer, S., A. Tholen, J. Overmann, and A. Brune. 2000 Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood-and soil-feeding termites by molecular and culture-dependent techniques Arch. Microbiol. 173 126–173

    Article  PubMed  CAS  Google Scholar 

  • Béguin, P., and J.-P. Aubert. 1994 The biological degradation of cellulose FEMS Microbiol. Rev. 13 25–58

    Article  PubMed  Google Scholar 

  • Benemann, J. R. 1973 Nitrogen fixation in termites Science 181 164–165

    Article  PubMed  CAS  Google Scholar 

  • Bentley, B. L. 1984 Nitrogen fixation in termites: Fate of newly fixed nitrogen J. Insect Physiol. 30 653–655

    Article  CAS  Google Scholar 

  • Berchtold, M., W. Ludwig, and H. Koenig. 1994 16S rDNA sequence and phylogenetic position of an uncultivated spirochete from the hindgut of the termite Mastotermes darwiniensis Froggatt FEMS Microbiol. Lett. 123 269–273

    Article  PubMed  CAS  Google Scholar 

  • Berchtold, M., and H. König. 1996 Phylogenetic analysis and in-situ identification of uncultivated spirochetes from the hindgut of the termite Mastotermes darwiniensis System. Appl. Microbiol. 19 66–73

    Article  Google Scholar 

  • Berchtold, M., A. Chatzinotas, W. Schönhuber, A. Brune, R. Amann, D. Hahn, and H. König. 1999 Differential enumeration and in situ localization of micro-organisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes Arch. Microbiol. 172 407–416

    Article  PubMed  CAS  Google Scholar 

  • Bermudes, D., D. Chase, and L. Margulis. 1988 Morphology as a basis for taxonomy of large spirochetes symbiotic in wood-eating cockroaches and termites: Pillotina gen. nov., nom. rev.; Pillotina calotermitidis sp. nov., nom. rev.; Diplocalyx gen. nov., nom. rev.; Diplocalyx calotermitidis sp. nov., nom. rev.; Hollandina gen. nov., nom. rev.; Hollandina pterotermitidis sp. nov., nom. rev.; and Clevelandina reticulitermitidis gen. nov., sp. nov Int. J. Syst. Bacteriol. 38 291–302

    Article  PubMed  CAS  Google Scholar 

  • Bignell, D. E., H. Oskarsson, and J. M. Anderson. 1979 Association of actinomycete-like bacteria with soil-feeding termites (Termitidae, Termitinae) Appl. Environ. Microbiol. 37 339–342

    PubMed  CAS  Google Scholar 

  • Bignell, D. E., and J. M. Anderson. 1980a Determination of pH and oxygen status in the guts of lower and higher termites J. Insect Physiol. 26 183–188

    Article  CAS  Google Scholar 

  • Bignell, D. E., H. Oskarsson, and J. M. Anderson. 1980b Distribution and abundance of bacteria in the gut of a soil-feeding termite Procubitermes aburiensis (Termitidae, Termitinae) J. Gen. Microbiol. 117 393–403

    PubMed  CAS  Google Scholar 

  • Bignell, D. E., H. Oskarsson, and J. M. Anderson. 1980c Specialization of the hindgut wall for the attachment of symbiotic microorganisms in a termite Procubitermes aburiensis Zoomorphology 96 103–112

    Article  Google Scholar 

  • Bignell, D. E., H. Oskarsson, J. M. Anderson, P. Ineson, and T. G. Wood. 1983 Structure, microbial associations and function of the so-called “mixed segment” of the gut in two soil-feeding termites, Procubitermes aburiensis and Cubitermes severus (Termitidae, Termitinae) J. Zool. Lond. 201 445–480

    Article  Google Scholar 

  • Bignell, D. E. 1984 The arthropod gut as an environment for microorganisms In: J. M. Anderson, A. D. M. Rayner, and D. W. H. Walton (Eds.) Invertebrate-microbial Interactions Cambridge University Press Cambridge, UK 205–227

    Google Scholar 

  • Bignell, D. E., J. M. Anderson, and R. Crosse. 1991 Isolation of facultatively aerobic actinomycetes from the gut, parent soil and mound materials of the termites Procubitermes aburiensis and Cubitermes severus FEMS Microbiol. Ecol. 85 151–160

    Google Scholar 

  • Bignell, D. E. 1994a Soil-feeding and gut morphology in higher termites In: J. H. Hunt and C. A. Nalepa (Eds.) Nourishment and Evolution in Insect Societies Westview Press Boulder, CO 131–158

    Google Scholar 

  • Bignell, D. E., M. Slaytor, P. C. Veivers, R. Mühlemann, and R. H. Leuthold. 1994b Functions of symbiotic fungus gardens in higher termites of the genus Macrotermes: Evidence against the acquired enzyme hypothesis Acta Microbiol. Immunol. Hung. 41 391–401

    PubMed  CAS  Google Scholar 

  • Bignell, D. E., and P. Eggleton. 1995 On the elevated intestinal pH of higher termites (Isoptera: Termitidae) Insect. Soc. 42 57–69

    Article  Google Scholar 

  • Bignell, D. E., P. Eggleton, L. Nunes, and K. L. Thomas. 1997 Termites as mediators of carbon fluxes in tropical forests: Budgets for carbon dioxide and methane emissions In: A. B. Watt, N. E. Stork, and M. D. Hunter (Eds.) Forests and Insects Chapman and Hall London, UK 109–134

    Google Scholar 

  • Bignell, D. E. 2000 Introduction to Symbiosis In: T. Abe, D. E. Bignell, and M. Higashi (Eds.) Termites: Evolution, Sociality, Symbiosis, Ecology Kluwer Academic Publishers Dordrecht, The Netherlands 189–208

    Google Scholar 

  • Bloodgood, R. A., K. R. Miller, T. P. Fitzharris, and J. R. Mcintosh. 1974 The ultrastructure of Pyrsonympha and its associated microorganisms J. Morphol. 143 77–106

    Article  Google Scholar 

  • Bloodgood, R. A., and T. P. Fitzharris. 1976 Specific association of prokaryotes with symbiotic flagellate protozoa from the hindgut of the termite Reticulitermes and the wood-eating roach, Cryptocercus Cytobios 17 103–122

    PubMed  CAS  Google Scholar 

  • Boga, H. I., and A. Brune. 2003a Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts Appl. Environ. Microbiol. 69 779–786

    Article  PubMed  CAS  Google Scholar 

  • Boga, H. I., W. Ludwig, and A. Brune. 2003b Sporomusa aerivorans sp. nov., an oxygen-reducing homoacetogenic bacterium from the gut of a soil-feeding termite Int. J. System. Evol. Microbiol. 53 1397–1404

    Article  CAS  Google Scholar 

  • Brauman, A., J. F. Koenig, J. Dutreix, and J. L. Garcia. 1990a Characterization of two sulfate-reducing bacteria from the gut of the soil-feeding termite, Cubitermes speciosus Ant. v. Leeuwenhoek 58 271–275

    Article  CAS  Google Scholar 

  • Brauman, A., M. Labat, and J. L. Garcia. 1990b Preliminary studies on the gut microbiota of the soil-feeding termite: Cubitermes speciosus In: R. Lésel (Ed.) Microbiology in Poecilotherms Elsevier Amsterdam, The Netherlands 73–77

    Google Scholar 

  • Brauman, A., M. D. Kane, M. Labat, and J. A. Breznak. 1992 Genesis of acetate and methane by gut bacteria of nutritionally diverse termites Science 257 1384–1387

    Article  PubMed  CAS  Google Scholar 

  • Brauman, A., J. A. Müller, J. L. Garcia, A. Brune, and B. Schink. 1998 Fermentative degradation of 3-hydroxybenzoate in pure culture by a novel strictly anaerobic bacterium, Sporotomaculum hydroxybenzoicum gen. nov., sp. nov Int. J. System. Bacteriol. 48 215–221

    Article  CAS  Google Scholar 

  • Brauman, A., D. E. Bignell, and I. Tayasu. 2000 Soil-feeding termites: Biology, microbial associations and digestive mechanisms In: T. Abe, D. E. Bignell, and M. Higashi (Eds.) Termites: Evolution, Sociality, Symbiosis, Ecology Kluwer Academic Publishers Dordrecht, The Netherlands 233–259

    Google Scholar 

  • Brauman, A., J. Dore, P. Eggleton, D. Bignell, J. A. Breznak, and M. D. Kane. 2001 Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits FEMS Microbiol. Ecol. 35 27–36

    Article  PubMed  CAS  Google Scholar 

  • Brennan, Y., W. N. Callen, L. Christoffersen, P. Dupree, F. Goubet, S. Healey, M. Hernandez, M. Keller, K. Li, N. Palackal, A. Sittenfeld, G. Tamayo, S. Wells, G. P. Hazlewood, E. J. Mathur, J. M. Short, D. E. Robertson, and B. A. Steer. 2004 Unusual microbial xylanases from insect guts Appl. Environ. Microbiol. 70 3609–3617

    Article  PubMed  CAS  Google Scholar 

  • Breznak, J. A., W. J. Brill, J. W. Mertins, and H. C. Coppel. 1973 Nitrogen fixation in termites Nature 244 577–580

    Article  PubMed  CAS  Google Scholar 

  • Breznak, J. A. 1975 Symbiotic relationships between termites and their intestinal microbiota Symp. Soc. Exp. Biol. 29 559–580

    PubMed  Google Scholar 

  • Breznak, J. A., and H. S. Pankratz. 1977 In situ morphology of the gut microbiota of wood-eating termites [Reticulitermes flavipes (Kollar) and Coptotermes formosanus Shiraki]; Appl. Environ. Microbiol. 33 406–426

    PubMed  CAS  Google Scholar 

  • Breznak, J. A. 1984a Hindgut spirochetes of termites and Cryptocercus punctulatus In: N. R. Krieg and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 1 67–70

    Google Scholar 

  • Breznak, J. A., and J. M. Switzer. 1986 Acetate synthesis from H2 plus CO2 by termite gut microbes Appl. Environ. Microbiol. 52 623–630

    PubMed  CAS  Google Scholar 

  • Breznak, J. A., J. M. Switzer, and H.-J. Seitz. 1988 Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites Arch. Microbiol. 150 282–288

    Article  CAS  Google Scholar 

  • Breznak, J. A., and M. D. Kane. 1990 Microbial H2/CO2 acetogenesis in animal guts: Nature and nutritional significance FEMS Microbiol. Rev. 87 309–314

    Article  CAS  Google Scholar 

  • Breznak, J. A., and J. Switzer Blum. 1991 Mixotrophy in the termite gut acetogen, Sporomusa termitida Arch. Microbiol. 156 105–110

    Article  CAS  Google Scholar 

  • Breznak, J. A. 1994a Acetogenesis from carbon dioxide in termite guts In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 303–330

    Chapter  Google Scholar 

  • Breznak, J. A., and A. Brune. 1994b Role of microorganisms in the digestion of lignocellulose by termites Ann. Rev. Entomol. 39 453–487

    Article  CAS  Google Scholar 

  • Breznak, J. A. 2000 Ecology of prokaryotic microbes in the guts of wood-and litter-feeding termites In: T. Abe, D. E. Bignell, and M. Higashi (Eds.) Termites: Evolution, Sociality, Symbiosis, Ecology Kluwer Academic Publishers Dordrecht, The Netherlands 209–231

    Google Scholar 

  • Breznak, J. A. 2002 Phylogenetic diversity and physiology of termite gut spirochetes Integr. Comp. Biol. 42 313–318

    Article  PubMed  Google Scholar 

  • Breznak, J. A. 2004 Invertebrates—Insects In: A. T. Bull (Ed.) Microbial Biodiversity and Bioprospecting ASM Press Washington, DC 191–203

    Google Scholar 

  • Brune, A., D. Emerson, and J. A. Breznak. 1995a The termite gut microflora as an oxygen sink: Microelectrode determination of oxygen and pH gradients in guts of lower and higher termites Appl. Environ. Microbiol. 61 2681–2687

    PubMed  CAS  Google Scholar 

  • Brune, A., E. Miambi, and J. A. Breznak. 1995b Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites Appl. Environ. Microbiol. 61 2688–2695

    PubMed  CAS  Google Scholar 

  • Brune, A., and M. Kühl. 1996 pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes J. Insect Physiol. 42 1121–1127

    Article  CAS  Google Scholar 

  • Brune, A. 1998 Termite guts: The world’s smallest bioreactors Trends Biotechnol. 16 16–21

    Article  CAS  Google Scholar 

  • Brune, A., and M. Friedrich. 2000a Microecology of the termite gut: Structure and function on a microscale Curr. Opin. Microbiol. 3 263–269

    Article  PubMed  CAS  Google Scholar 

  • Brune, A., P. Frenzel, and H. Cypionka. 2000b Life at the oxic-anoxic interface: Microbial activities and adaptations FEMS Microbiol. Rev. 24 691–710

    PubMed  CAS  Google Scholar 

  • Brune, A., W. Ludwig, and B. Schink. 2002 Propionivibrio limicola sp. nov., a fermentative bacterium specialized in the degradation of hydroaromatic compounds, reclassification of Propionibacter pelophilus as Propionivibrio pelophilus comb. nov. and amended description of the genus Propionivibrio Int. J. System. Evol. Microbiol. 52 441–444

    Google Scholar 

  • Brune, A. 2003 Symbionts aiding digestion In: V. H. Resh and R. T. Cardé (Eds.) Encyclopedia of Insects Academic Press New York, NY 1102–1107

    Google Scholar 

  • Brune, A., and U. Stingl. 2005 Prokaryotic symbionts of termite gut flagellates: Phylogenetic and metabolic implications of a tripartite symbiosis In: J. Overmann (Ed.) Molecular Basis of Symbiosis Springer-Verlag New York, NY

    Google Scholar 

  • Cazemier A. E., J. C. Verdoes, F. A. G. Reubsaet, J. H. P. Hackstein, C. van der Drift, and H. J. M. Op den Camp. 2003 Promicromonospora pachnodae sp. nov., a member of the (hemi)cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata Ant. v. Leeuwenhoek 83 135–148

    Article  CAS  Google Scholar 

  • Cleveland, L. R. 1925a The effects of oxygenation and starvation on the symbiosis between the termite, Termopsis, and its intestinal flagellates Biol. Bull. 48 309–327

    Article  CAS  Google Scholar 

  • Cleveland, L. R. 1925b Toxicity of oxygen for protozoa in vivo and in vitro: Animals defaunated without injury Biol. Bull. 48 455–468

    Article  CAS  Google Scholar 

  • Cleveland, L. R. 1926 Symbiosis among animals with special reference to termites and their intestinal flagellates Quart. Rev. Biol. 1 51–64

    Article  Google Scholar 

  • Cleveland, L. R., and A. V. Grimstone. 1964 The fine structure of the flagellate Mixotricha paradoxa and its associated micro-organisms Proc. R. Soc. Lond. Ser. B. Biol. Sci. 159 668–686

    Article  Google Scholar 

  • Collins, N. M. 1983 The utilization of nitrogen resources by termites (Isoptera) In: J. A. Lee, S. McNeill, and I. C. H. Rorison (Eds.) Nitrogen as an Ecological Factor Blackwell Scientific Publications Oxford, UK 381–412

    Google Scholar 

  • Collins, M. D., and H. N. Shah. 1986 Reclassification of Bacteroides termitidis Sebald (Holdeman and Moore) in a new genus Sebaldella, as Sebaldella termitidis comb. nov Int. J. System. Bacteriol. 36 349–350

    Article  Google Scholar 

  • Cook, S. F. 1932 The respiratory gas exchange in Termopsis nevadensis Biol. Bull. 63 246–257

    Article  CAS  Google Scholar 

  • Cook, S. F. 1943 Nonsymbiotic utilization of carbohydrates by the termite Zootermopsis angusticollis Physiol. Zool. 16 123–128

    Google Scholar 

  • Cook, T. J., and R. E. Gold. 2000 Effects of different cellulose sources on the structure of the hindgut flagellate community in Reticulitermes virginicus (Isoptera: Rhinotermitidae) Sociobiology 35 119–130

    Google Scholar 

  • Cord-Ruwisch, R., H. J. Seitz, and R. Conrad. 1988 The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor Arch. Microbiol. 149 350–357

    Article  CAS  Google Scholar 

  • Cornelius, M. L., D. J. Daigle, W. J. Connick Jr., A. Parker, and K. Wunch. 2002 Responses of Coptotermes formosanus and Reticulitermes flavipes (Isoptera: Rhinotermitidae) to three types of wood rot fungi cultured on different substrates J. Econ. Entomol. 95 121–128

    Article  PubMed  Google Scholar 

  • Crosland, M. W. J., L. K. Chan, and J. A. Buswell. 1996 Symbiotic fungus and enzymatic digestion in the gut of the termite, Macrotermes barneyi (Light) (Isoptera: Termitidae) J. Entomol. Sci. 31 132–137

    Google Scholar 

  • Curtis, A. D., and D. A. Waller. 1995 Changes in nitrogen fixation rates in termites (Isoptera: Rhinotermitidae) maintained in the laboratory Ann. Entomol. Soc. Am. USA 88 764–767

    Google Scholar 

  • Curtis, A. D., and D. A. Waller. 1996 The effects of decreased pO2 and increased pCO2 on nitrogen fixation rates in termites (Isoptera: Rhinotermitidae) J. Insect Physiol. 42 867–872

    Article  CAS  Google Scholar 

  • Curtis, A. D., and D. A. Waller. 1998 Seasonal patterns of nitrogen fixation in termites Funct. Ecol. 12 803–807

    Article  Google Scholar 

  • Cypionka, H. 2000 Oxygen respiration by Desulfovibrio species Ann. Rev. Microbiol. 54 827–848

    Article  CAS  Google Scholar 

  • Czolij, R., M. Slaytor, P. C. Veivers, and R. W. O’Brien. 1984 Gut morphology of Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae) Int. J. Insect Morphol. Embryol. 13 337–355

    Article  Google Scholar 

  • Czolij, R., M. Slaytor, and R. W. O’Brien. 1985 Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitiosus Hill (Termitidae, Nasutitermitinae) Appl. Environ. Microbiol. 49 1226–1236

    Google Scholar 

  • d’Ambrosio, U., M. Dolan, A. M. Wier, and L. Margulis. 1999 Devescovinid trichomonad with axostyle-based rotary motor (“Rubberneckia”): Taxonomic assignment as Caduceia versatilis sp. nov Eur. J. Protistol. 35 327–337

    Article  PubMed  Google Scholar 

  • Darlington, J. P. E. C. 1994 Nutrition and evolution in fungus-growing termites In: J. H. Hunt and C. A. Nalepa (Eds.) Nourishment and Evolution in Insect Societies Westview Press Boulder, CO 105–130

    Google Scholar 

  • Davison, A., and M. Blaxter. 2005 Ancient Origin of Glycosyl Hydrolase Family 9 Cellulase Genes Mol. Biol. Evol. 22 1273–1284

    Article  PubMed  CAS  Google Scholar 

  • de Bary, A. 1878 Ueber Symbiose Bericht der Versammlung Deutscher Naturforscher und Aerzte 121–126

    Google Scholar 

  • Derakshani, M., L. Lukow, and W. Liesack. 2001 Novel bacterial lineages at the (sub)division level as detected by signature nucleotide-targeted recovery of 16S rRNA genes from bulk soil and rice roots of flooded rice microcosms Appl. Environ. Microbiol. 67 623–631

    Article  PubMed  CAS  Google Scholar 

  • Dolan, M., and L. Margulis. 1997 Staurojoenia and other symbionts in Neotermes from San Salvador Island, Bahamas Symbiosis 22 229–239

    PubMed  CAS  Google Scholar 

  • Dolan, M. F. 2001 Speciation of termite gut protists: The role of bacterial symbionts Int. Microbiol. 4 203–208

    Article  PubMed  CAS  Google Scholar 

  • Donovan, S. E., P. Eggleton, and D. E. Bignell. 2001 Gut content analysis and a new feeding group classification of termites Ecol. Entomol. 26 356–366

    Article  Google Scholar 

  • Donovan, S. E., K. J. Purdy, M. D. Kane, and P. Eggleton. 2004 Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types Appl. Environ. Microbiol 70 3884–3892

    Article  PubMed  CAS  Google Scholar 

  • Ebert, A., and A. Brune. 1997 Hydrogen concentration profiles at the oxic-anoxic interface: A microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar) Appl. Environ. Microbiol. 63 4039–4046

    PubMed  CAS  Google Scholar 

  • Eutick, M. L., R. W. O’Brien, and M. Slaytor. 1976 Aerobic state of gut of Nasutitermes exitiosus and Coptotermes lacteus, high and low caste termites J. Insect Physiol. 22 1377–1380

    Article  Google Scholar 

  • Eutick, M. L., R. W. O’Brien, and M. Slaytor. 1978a Bacteria from the gut of Australian termites Appl. Environ. Microbiol. 35 823–828

    PubMed  CAS  Google Scholar 

  • Eutick, M. L., P. C. Veivers, R. W. O’Brien, and M. Slaytor. 1978b Dependence of the higher termite Nasutitermes exitiosus and the lower termite Coptotermes lacteus on their gut flora J. Insect Physiol. 24 363–368

    Article  CAS  Google Scholar 

  • French, J. R. J., G. L. Turner, and J. F. Bradbury. 1976 Nitrogen fixation by bacteria from the hindgut of termites J. Gen. Microbiol. 95 202–206

    Article  CAS  Google Scholar 

  • Friedrich, M. W., D. Schmitt-Wagner, T. Lueders, and A. Brune. 2001 Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus Appl. Environ. Microbiol. 67 4880–4890

    Article  PubMed  CAS  Google Scholar 

  • Fröhlich, J., and H. König. 1999a Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator System. Appl. Microbiol. 22 249–257

    Article  Google Scholar 

  • Fröhlich, J., H. Sass, H.-D. Babenzien, T. Kuhnigk, A. Varma, S. Saxena, C. Nalepa, P. Pfeiffer, and H. König. 1999b Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut of the lower termite Mastotermes darwiniensis Can. J. Microbiol. 45 145–152

    PubMed  Google Scholar 

  • Fujita, A., I. Shimizu, and T. Abe. 2001 Distribution of lysozyme and protease, and amino acid concentration in the guts of a wood-feeding termite, Reticulitermes speratus (Kolbe): Possible digestion of symbiont bacteria transferred by trophallaxis Physiol. Entomol. 26 116–123

    Article  CAS  Google Scholar 

  • Fujita, A., and T. Abe. 2002a Amino acid concentration and distribution of lysozyme and protease activities in the guts of higher termites Physiol. Entomol. 27 76–78

    Article  CAS  Google Scholar 

  • Fujita, A., T. Minamoto, I. Shimizu, and T. Abe. 2002b Molecular cloning of lysozyme-encoding cDNAs expressed in the salivary gland of a wood-feeding termite, Reticulitermes speratus Insect Biochem. Molec. Biol. 32 1615–1624

    Article  CAS  Google Scholar 

  • Fujita, A. 2004 Lysozymes in insects: what role do they play in nitrogen metabolism? Physiol. Entomol 299 305–310

    Article  Google Scholar 

  • Graber, J. R., and J. A. Breznak. 2004a Physiology and nutrition of Treponema primitia, an H2/CO2-acetogenic spirochete from termite hindguts Appl. Environ. Microbiol. 70 1307–1314

    Article  PubMed  CAS  Google Scholar 

  • Graber, J. R., J. R. Leadbetter, and J. A. Breznak. 2004b Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts Appl. Environ. Microbiol. 70 1307–1314

    Article  PubMed  CAS  Google Scholar 

  • Graber, J. R., and J. A. Breznak. 2005 Folate cross-feeding supports symbiotic homoacetogenic spirochetes Appl. Environ. Microbiol 71 1883–1889

    Article  PubMed  CAS  Google Scholar 

  • Grandi, G., L. Guidi, and M. Chicca. 1997 Endonuclear bacterial symbionts in two termite species: An ultrastructural study J. Submicrosc. Cytol. Pathol. 29 281–292

    Google Scholar 

  • Grassé, P.-P., and C. Noirot. 1958 Le meule des termites champignonnistes et sa signification symbiotique Ann. Sci. Nat. Ser. 11, Zool. Biol. Animale 11 113–128

    Google Scholar 

  • Grech-Mora, I., M.-L. Fardeau, B. K. C. Patel, B. Ollivier, A. Rimbault, G. Prensier, G., J.-L. Garcia, and E. Garnier-Sillam. 1996 Isolation and characterization of Sporobacter termitidis gen. nov., sp. nov., from the digestive tract of the wood-feeding termite Nasutitermes lujae Int. J. Syst. Bacteriol. 46 512–518

    Article  Google Scholar 

  • Guo, L., D. R. Quicili, J. Chase, and G. J. Blomquist. 1991 Gut tract microorganisms supply the precursors for methyl-branched hydrocarbon biosynthesis in the termite, Zootermopsis nevadensis Insect Biochem. 21 327–333

    Article  CAS  Google Scholar 

  • Harazono, K., N. Yamashita, N. Shinzato, Y. Watanabe, T. Fukatsu, and R. Kurane. 2003 Isolation and characterization of aromatics-degrading microorganisms from the gut of the lower termite Coptotermes formosanus Biosci. Biotechnol. Biochem. 67 889–892

    Article  PubMed  CAS  Google Scholar 

  • Hethener, P., A. Brauman, and J. L. Garcia. 1992 Clostridium termitidis sp. nov., a cellulolytic bacterium from the gut of the wood-feeding termite, Nasutitermes lujae System. Appl. Microbiol. 5 52–58

    Article  Google Scholar 

  • Higashi, M., T. Abe, and T. P. Burns. 1992 Carbon-nitrogen balance and termite ecology Proc. R. Soc. Lond. Ser. B. Biol. Sci. 249 303–308

    Article  Google Scholar 

  • Hirai, H., N. Shinzato, A. Nakagawa, Y. Watanabe, and R. Kurane. 2000 Degradation of lignin model compounds by various termites [in Japanese]; Mokuzai Gakkaishi 46 63–67

    CAS  Google Scholar 

  • Hollande A., and J. Valentin. 1969 Appareil de Golgi, pinocytose, lysosomes, mitochondries, bactéries symbiontiques, atractophores et pleuromitose chez les Hypermastigines du genre Joenia: Affinités entre Joenidae et Trichomonadines Protistologica 5 39–86

    Google Scholar 

  • Hongoh, Y., M. Ohkuma, and T. Kudo. 2003a Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera: Rhinotermitidae) FEMS Microbiol. Ecol. 44 231–242

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y., H. Yuzawa, M. Ohkuma, and T. Kudo. 2003b Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment FEMS Microbiol. Lett. 221 299–304

    Article  PubMed  CAS  Google Scholar 

  • Honigberg, B. M. 1970 Protozoa associated with termites and their role in digestion In: K. Krishna and F. M. Weesner (Eds.) Biology of Termites Academic Press New York, NY 2 1–36

    Google Scholar 

  • Hopkins, D. W., J. A. Chudek, D. E. Bignell, J. Frouz, E. A. Webster, and T. Lawson. 1998 Application of 13C NMR to investigate the transformations and biodegradation of organic materials by wood-and soil-feeding termites, and a coprophagous litter-dwelling dipteran larva Biodegradation 9 423–431

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz, P., B. M. Goebel, and N. R. Pace. 1998 Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity J. Bacteriol. 180 4765–4774

    PubMed  CAS  Google Scholar 

  • Hungate, R. E. 1939 Experiments on the nutrition of Zootermopsis. III: The anaerobic carbohydrate dissimilation by the intestinal protozoa Ecology 20 230–245

    Article  CAS  Google Scholar 

  • Hungate, R. E. 1943 Quantitative analyses of the cellulose fermentation by termite protozoa Ann. Entomol. Soc. Am. 36 730–739

    CAS  Google Scholar 

  • Hungate, R. E. 1946 Studies on cellulose fermentation. II: An anaerobic cellulose-decomposing actinomycete, Micromonospora propionici, n. sp J. Bacteriol. 51 51–56

    CAS  Google Scholar 

  • Hungate, R. E. 1955 Mutualistic intestinal protozoa In: S. H. Hutner and A. Lwoff (Eds.) Biochemistry and Physiology of Protozoa Academic Press New York, NY 2 159–199

    Google Scholar 

  • Hyodo F., J. Azuma, and T. Abe. 1999 Estimation of effect of passage through the gut of a lower termite, Coptotermes formosanus Shiraki, on lignin by solid-state CP MAS 13C-NMR Holzforschung 53 244–246

    Article  CAS  Google Scholar 

  • Hyodo F., T. Inoue, J. I. Azuma, I. Tayasu, and T. Abe. 2000 Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera: Macrotermitinae) Soil Biol. Biochem. 32 653–658

    Article  CAS  Google Scholar 

  • Iida, T., M. Ohkuma, K. Ohtoko, and T. Kudo. 2000 Symbiotic spirochetes in the termite hindgut: Phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists FEMS Microbiol. Ecol. 34 17–26

    Article  PubMed  CAS  Google Scholar 

  • Inoue, T., K. Murashima, J.-I. Azuma, A. Sugimoto, and M. Slaytor. 1997 Cellulose and xylan utilization in the lower termite Reticulitermes speratus J. Insect Physiol. 43 235–242

    Article  PubMed  CAS  Google Scholar 

  • Inoue, T., O. Kitade, T. Yoshimura, and I. Yamaoka. 2000 Symbiotic associations with protists In: T. Abe, D. E. Bignell, and M. Higashi (Eds.) Termites: Evolution, Sociality, Symbiosis, Ecology Kluwer Academic Publishers Dordrecht, The Netherlands 275–288

    Google Scholar 

  • Inoue, T., S. Moriya, M. Ohkuma, and T. Kudo. 2005 Molecular cloning and charactrization of a cellulase gene from a symbiotic protist of the lower termite, Coptotermes formosanus Gene 349 67–75

    Article  PubMed  CAS  Google Scholar 

  • Itakura, S., H. Tanaka, and A. Enoki. 1999 Occurrence and metabolic role of the pyruvate dehydrogenase complex in the lower termite Coptotermes formosanus (Shiraki) Insect Biochem. Molec. Biol. 29 625–633

    Article  CAS  Google Scholar 

  • Itakura, S., H. Tanaka, A. Enoki, D. J. Chappell, and M. Slaytor. 2003 Pyruvate and acetate metabolism in termite mitochondria J. Insect Physiol. 49 917–926

    Article  PubMed  CAS  Google Scholar 

  • Jeffries, T. W. 1994 Biodegradation of lignin and hemicelluloses In: C. Ratledge (Ed.) Biochemistry of Microbial Degradation Kluwer Academic Publishers Dordrecht, The Netherlands 233–277

    Chapter  Google Scholar 

  • Ji, R., A. Kappler, and A. Brune. 2000 Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites Soil Biol. Biochem. 32 1281–1291

    Article  CAS  Google Scholar 

  • Ji, R., and A. Brune. 2001 Transformation and mineralization of 14C-labeled cellulose, peptidoglycan, and protein by the soil-feeding termite Cubitermes orthognatus Biol. Fertil. Soils 33 166–174

    Article  CAS  Google Scholar 

  • Ji, R., and A. Brune. 2005 Digestion of peptidic residues in humic substances by an alkali-stable and humic-acidtolerant proteolytic activity in the gut of soil-feeding termites Soil. Biol. Biochem 37 1648–1655

    Article  CAS  Google Scholar 

  • Johjima, T., M. Ohkuma, and T. Kudo. 2003 Isolation and cDNA cloning of novel hydrogen peroxide-dependent phenol oxidase from the basidiomycete Termitomyces albuminosus Appl. Microbiol. Biotechnol 61 220–225

    PubMed  CAS  Google Scholar 

  • Kambhampati, S., and P. Eggleton. 2000 Taxonomy and phylogenetics of Isoptera In: T. Abe, D. E. Bignell, and M. Higashi (Eds.) Termites: Evolution, Sociality, Symbiosis, Ecology Kluwer Academic Publishers Dordrecht, The Netherlands 1–23

    Google Scholar 

  • Kane, M. D., and J. A. Breznak. 1991a Acetonema longum gen. nov. sp.nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis Arch. Microbiol. 156 91–98

    Article  PubMed  CAS  Google Scholar 

  • Kane, M. D., A. Brauman, and J. A. Breznak. 1991b Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus Arch. Microbiol. 156 99–104

    Article  CAS  Google Scholar 

  • Kane, M. D. 1997 Microbial fermentation in insect guts In: R. I. Mackie and B. A. White (Eds.) Gastrointestinal Microbiology Chapman and Hall New York, NY 1 231–265

    Chapter  Google Scholar 

  • Kappler, A., and A. Brune. 1999 Influence of gut alkalinity and oxygen status on mobilization and size-class distribution of humic acids in the hindgut of soil-feeding termites Appl. Soil Ecol. 13 219–229

    Article  Google Scholar 

  • Kappler A., and A. Brune. 2002 Dynamics of redox potential and changes in redox state of iron and humic acids during gut passage in soil-feeding termites (Cubitermes spp.) Soil Biol. Biochem. 34 221–227

    Article  CAS  Google Scholar 

  • Katoh, H., T. Miura, K. Maekawa, N. Shinzato, and T. Matsumoto. 2002 Genetic variation of symbiotic fungi cultivated by the macrotermitine termite Odontotermes formosanus (Isoptera: Termitidae) in the Ryukyu Archipelago Molec. Ecol. 11 1565–1572

    Article  CAS  Google Scholar 

  • Katzin, L. I., and H. Kirby. 1939 The relative weight of termites and their protozoa J. Parasitol. 25 444–445

    Article  Google Scholar 

  • Koidzumi, M. 1921 Studies on the intestinal protozoa found in the termites of Japan Parasitology 13 235–305

    Article  Google Scholar 

  • Kovoor, J. 1967 Le pH intestinal d’un termite supérieur, Microcerotermes edentatus (Was., Amitermitinae) Insect. Soc. 14 157–160

    Article  Google Scholar 

  • Kovoor, J. 1968 L’intestin d’un termite supérieur (Microcerotermes edentatus, Wasman, Amitermitinae). Histophysiologie et flore bacterienne symbiotique Bull. Biol. Fr. Belg. 102 45–84

    Google Scholar 

  • Kudo, T., M. Ohkuma, S. Moriya, S. Noda, and K. Ohtoko. 1998 Molecular phylogenetic identification of the intestinal anaerobic microbial community in the hindgut of the termite, Reticulitermes speratus, without cultivation Extremophiles 2 155–161

    Article  PubMed  CAS  Google Scholar 

  • Kuhnigk, T., E.-M. Borst, A. Ritter, P. Kämpfer, A. Graf, H. Hertel, and H. König. 1994 Degradation of lignin monomers by the hindgut flora of xylophagous termites System. Appl. Microbiol. 17 76–85

    Article  CAS  Google Scholar 

  • Kuhnigk, T., E.-M. Borst, and A. Breunig. 1995 Bacillus oleronius sp. nov., a member of the hindgut flora of the termite Reticulitermes santonensis (Feytaud) Can. J. Microbiol. 41 699–706

    Article  PubMed  CAS  Google Scholar 

  • Kuhnigk, T., J. Branke, D. Krekeler, H. Cypionka, and H. König. 1996 A feasible role of sulfate-reducing bacteria in the termite gut System. Appl. Microbiol. 19 139–149

    Article  CAS  Google Scholar 

  • Kuhnigk, T., and H. König. 1997 Degradation of dimeric lignin model compounds by aerobic bacteria isolated from the hindgut of xylophagous termites J. Basic Microbiol. 37 205–211

    Article  PubMed  CAS  Google Scholar 

  • La Fage, J. P., and W. L. Nutting. 1978 Nutrient dynamics of termites In: M. V. Brian (Ed.) Production Ecology of Ants and Termites Cambridge University Press Cambridge, UK 165–232

    Google Scholar 

  • Leadbetter, J. R., and J. A. Breznak. 1996 Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes Appl. Environ. Microbiol. 62 3620–3631

    PubMed  CAS  Google Scholar 

  • Leadbetter, J. R., L. D. Crosby, and J. A. Breznak. 1998 Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts Arch. Microbiol. 169 287–292

    Article  PubMed  CAS  Google Scholar 

  • Leadbetter, J. R., T. M. Schmidt, J. R. Graber, and J. A. Breznak. 1999 Acetogenesis from H2 plus CO2 by spirochetes from termite guts Science 283 686–689

    Article  PubMed  CAS  Google Scholar 

  • Leander, B. S., and P. J. Keeling. 2004 Symbiotic innovation in the oxymonad Streblomastix strix J. Euk. Microbiol 51 291–300

    Article  PubMed  Google Scholar 

  • Leaphart, A. B., and C. R. Lovell. 2001 Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria Appl. Environ. Microbiol. 67 1392–1395

    Article  PubMed  CAS  Google Scholar 

  • Leaphart, A. B., M. J. Friez, and C. R. Lovell. 2003 Formyltetrahydrofolate synthetase sequences from salt marsh plant roots reveal a diversity of acetogenic bacteria and other bacterial functional groups Appl. Environ. Microbiol. 69 693–696

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. J., P. J. Schreurs, A. C. Messer, and S. H. Zinder. 1987 Association of methanogenic bacteria with flagellated protozoa from a termite hindgut Curr. Microbiol. 15 337–341

    Article  Google Scholar 

  • Leidy, J. 1849 [no title]; Proc. Acad. Nat. Sci. (Phila.) 4 225–233

    Google Scholar 

  • Leidy, J. 1881 The parasites of the termites J. Acad. Nat. Sci. (Phila.), 2nd Ser. 8 425–447

    Google Scholar 

  • Lemke T., T. van Alen, J. H. P. Hackstein, and A. Brune. 2001 Cross-epithelial hydrogen transfer from the midgut compartment drives methanogenesis in the hindgut of cockroaches Appl. Environ. Microbiol. 67 4657–4661

    Article  PubMed  CAS  Google Scholar 

  • Li, L., J. Fröhlich, P. Pfeiffer, and H. König. 2003 Termite gut symbiotic archaezoa are becoming living metabolic fossils Eukar. Cell 2 1091–1098

    Article  CAS  Google Scholar 

  • Lilburn, T. G., T. M. Schmidt, and J. A. Breznak. 1999 Phylogenetic diversity of termite gut spirochaetes Environ. Microbiol. 1 331–345

    Article  PubMed  CAS  Google Scholar 

  • Lilburn, T. G., K. S. Kim, N. E. Ostrom, K. R. Byzek, J. R. Leadbetter, and J. A. Breznak. 2001 Nitrogen fixation by symbiotic and free-living spirochetes Science 292 2495–2498

    Article  PubMed  CAS  Google Scholar 

  • Lo, N., C. Bandi, H. Watanabe, C. Nalepa, and T. Beninati. 2003a Evidence for co-cladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts Molec. Biol. Evol. 20 907–913

    Article  PubMed  CAS  Google Scholar 

  • Lo, N., H. Watanabe, and M. Sugimura. 2003b Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals Proc. R. Soc. Lond. Ser. B. Biol. Sci. 270, Suppl. 1 S69–S72

    Article  CAS  Google Scholar 

  • Lysenko, O. 1985 Non-sporeforming bacteria pathogenic to insects: Incidence and mechanisms Ann. Rev. Microbiol. 39 673–695

    Article  CAS  Google Scholar 

  • Machida, M., O. Kitade, T. Miura, and T. Matsumoto. 2001 Nitrogen recycling through proctodeal trophallaxis in the Japanese damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae) Insect. Soc. 48 52–56

    Article  Google Scholar 

  • Mannesmann, R., and B. Piechowski. 1989 Verteilungsmuster von Gärkammerbakterien einiger Termitenarten Mater. Org. 24 161–178

    Google Scholar 

  • Margulis, L., A. Olendzenski, and B. A. Afzelius. 1990 Endospore-forming filamentous bacteria symbiotic in termites: Ultrastructure and growth in culture of Arthromitus Symbiosis 8 95–116

    PubMed  CAS  Google Scholar 

  • Margulis, L., J. Z. Jorgensen, S. Dolan, R. Kolchinsky, F. A. Rainey, and S. C. Lo. 1998 The Arthromitus stage of Bacillus cereus: Intestinal symbionts of animals Proc. Natl. Acad. Sci. USA 95 1236–1241

    Article  PubMed  CAS  Google Scholar 

  • Martin, M. M., and J. S. Martin. 1978 Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis: The role of acquired digestive enzymes Science 199 1453–1455

    Article  PubMed  CAS  Google Scholar 

  • Martin, M. M., and J. S. Martin. 1979 The distribution and origins of the cellulolytic enzymes of the higher termite, Macrotermes natalensis Physiol. Zool. 52 11–21

    CAS  Google Scholar 

  • Martin, M. M. 1983 Cellulose digestion in insects Comp. Biochem. Physiol. 75A 313–324

    Article  CAS  Google Scholar 

  • Matoub, M., and C. Rouland. 1995 Purification and properties of the xylanases from the termite Macrotermes bellicosus and its symbiotic fungus Termitomyces sp Comp. Biochem. Physiol. 112B 629–635

    CAS  Google Scholar 

  • Matsuura, K. 2001 Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus Oikos 92 20–26

    Article  Google Scholar 

  • McSweeney C. S., A. Dulieu, R. I. Webb, T. Del Dot, and L. L. Blackall. 1999 Isolation and characterization of a Clostridium sp. with cinnamoyl esterase activity and unusual cell envelope ultrastructure Arch. Microbiol. 172 139–149

    Article  PubMed  CAS  Google Scholar 

  • Messer, A. C., and M. J. Lee. 1989 Effect of chemical treatments on methane emission by the hindgut microbiota in the termite Zootermopsis angusticollis Microb. Ecol. 18 275–284

    Article  CAS  Google Scholar 

  • Moriya, S., J. B. Dacks, A. Takagi, S. Noda, M. Ohkuma, W. F. Doolittle, and T. Kudo. 2003 Molecular phylogeny of three oxymonad genera: Pyrsonympha, Dinenympha and Oxymonas J. Eukar. Microbiol. 50 190–197

    Article  Google Scholar 

  • Nakashima, K., H. Watanabe, and J.-I. Azuma. 2002a. Cellulase genes from the parabasalian symbiont Pseudotrichonympha grassii in the hindgut of the wood-feeding termite Coptotermes formosanus Cell. Mol. Life. Sci 59 1554–1560

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, K., H. Watanabe, H. Saitoh, G. Tokuda, and J.-I. Azuma. 2002 Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki Insect Biochem. Molec. Biol. 32 777–784

    Article  CAS  Google Scholar 

  • Nalepa, C. A., D. E. Bignell, and C. Bandi. 2001 Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera Insect. Soc. 48 194–201

    Article  Google Scholar 

  • Ndiaye, D., R. Lensi, M. Lepage, and A. Brauman. 2004 The effect of the soil-feeding termite Cubitermes niokoloensis on soil microbial activity in a semi-arid savanna in West Africa Plant Soil 259 277–286

    Article  CAS  Google Scholar 

  • Noda, S., M. Ohkuma, R. Usami, K. Horikoshi, and T. Kudo. 1999 Culture-independent characterization of a gene responsible for nitrogen fixation in the symbiotic microbial community in the gut of the termite Neotermes koshunensis Appl. Environ. Microbiol. 65 4935–4942

    PubMed  CAS  Google Scholar 

  • Noda, S., M. Ohkuma, A. Yamada, Y. Hongoh, and T. Kudo. 2003 Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut Appl. Environ. Microbiol. 69 625–633

    Article  PubMed  CAS  Google Scholar 

  • Noirot, C. 1992 From wood-to humus-feeding: An important trend in termite evolution In: J. Billen (Ed.) Biology and Evolution of Social Insects Leuven University Press Leuven, Belgium 107–119

    Google Scholar 

  • Noirot, C. 1995 The gut of termites (isoptera): Comparative anatomy, systematics, phylogeny. I: Lower termites Ann. Soc. Entomol. Fr. (N.S.) 31 197–226

    Google Scholar 

  • Noirot, C. 2001 The gut of termites (isoptera). Comparative anatomy, systematics, phylogeny. II: Higher termites (termitidae) Ann. Soc. Entomol. Fr. (N.S.) 37 431–471

    Google Scholar 

  • O’Brien, R. W., and M. Slaytor. 1982 Role of microorganisms in the metabolism of termites Australian J. Biol. Sci. 35 239–262

    Google Scholar 

  • O’Brien, R. W., and J. A. Breznak. 1984 Enzymes of acetate and glucose metabolism in termites Insect Biochem. 14 639–643

    Article  Google Scholar 

  • Odelson, D. A., and J. A. Breznak. 1983 Volatile fatty acid production by the hindgut microbiota of xylophagous termites Appl. Environ. Microbiol. 45 1602–1613

    PubMed  CAS  Google Scholar 

  • Odelson, D. A., and J. A. Breznak. 1985a Cellulase and other polymer-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoan from termites Appl. Environ. Microbiol. 49 622–626

    PubMed  CAS  Google Scholar 

  • Odelson, D. A., and J. A. Breznak. 1985b Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites Appl. Environ. Microbiol. 49 614–621

    PubMed  CAS  Google Scholar 

  • Ohtoko K., M. Ohkuma, S. Moriya, T. Inoue, R. Usami, and T. Kudo. 2000 Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite Reticulitermes speratus Extremophiles 4 343–349

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma, M., S. Noda, K. Horikoshi, and T. Kudo. 1995 Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus FEMS Microbiol. Lett. 134 45–50

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma, M., and T. Kudo. 1996a Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus Appl. Environ. Microbiol. 62 461–468

    PubMed  CAS  Google Scholar 

  • Ohkuma, M., S. Noda, R., Usami, K. Horikoshi, and T. Kudo. 1996b Diversity of nitrogen-fixation genes in the symbiotic intestinal microflora of the termite Reticulitermes speratus Appl. Environ. Microbiol. 62 2747–2752

    PubMed  CAS  Google Scholar 

  • Ohkuma, M., and T. Kudo. 1998 Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus FEMS Microbiol. Lett. 164 389–395

    Article  CAS  Google Scholar 

  • Ohkuma, M., T. Iida, and T. Kudo. 1999a Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites FEMS Microbiol. Lett. 181 123–129

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M., S. Noda, and T. Kudo. 1999b Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites Appl. Environ. Microbiol. 65 4926–4934

    PubMed  CAS  Google Scholar 

  • Ohkuma, M., S. Noda, and T. Kudo. 1999c Phylogenetic relationships of symbiotic methanogens in diverse termites FEMS Microbiol. Lett. 171 147–153

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma, M. 2002a Symbiosis in the termite gut: Culture-independent molecular approaches In: J. Seckbach (Ed.) Symbiosis: Mechanisms and Model Systems Kluwer Academic Publishers Dordrecht, The Netherlands 717–730

    Google Scholar 

  • Ohkuma, M., S. Noda, Y. Hongoh, and T. Kudo. 2002b Diverse bacteria related to the bacteroides subgroup of the CFB phylum within the gut symbiotic communities of various termites Biosci. Biotechnol. Biochem. 66 78–84

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma, M. 2003 Termite symbiotic systems: Efficient bio-recycling of lignocellulose Appl. Microbiol. Biotechnol. 61 1–9

    PubMed  CAS  Google Scholar 

  • Ohkuma, M., H. Shimizu, T. Thongaram, S. Kosono, K. Moriya, S. Trakulnaleamsai, N. Noparatnaraporn, and T. Kudo. 2003 An alkaliphilic and xylanolytic Paenibacillus species isolated from the gut of a soil-feeding termite Microb. Environ 18 145–151

    Article  Google Scholar 

  • Osbrink, W. L. A., K. S. Williams, W. J. Connick, Jr., M. S. Wright, and A. R. Lax. 2001 Virulence of bacteria associated with the formosan subterranean termite (Isoptera: Rhinotermitidae) in New Orleans, La Environ. Entomol. 30 443–448

    Article  Google Scholar 

  • Paster, B. J., W. Ludwig, W. G. Weisburg, E. Stackebrandt, R. B. Hespell, C. M. Hahn, H. Reichenbach, K. O. Stetter, and C. R. Woese. 1985 A phylogenetic grouping of the bacteroides, cytophagas, and certain flavobacteria System. Appl. Microbiol. 6 34–42

    Article  CAS  Google Scholar 

  • Paster, B. J., F. E. Dewhirst, S. M. Cooke, V. Fussing, L. K. Poulsen, and J. A. Breznak. 1996 Phylogeny of not-yet-cultured spirochetes from termite guts Appl. Environ. Microbiol. 62 347–352

    PubMed  CAS  Google Scholar 

  • Pasti, M. B., and M. L. Belli. 1985 Cellulolytic activity of actinomycetes isolated from termite (Termitidae) gut FEMS Microbiol. Lett. 26 107–112

    Article  CAS  Google Scholar 

  • Pasti, M. B., A. L. Pometto III, M. P. Nuti, and D. L. Crawford. 1990 Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut Appl. Environ. Microbiol. 56 2213–2218

    PubMed  CAS  Google Scholar 

  • Patricolo, E., L. Villa, and M. Arizzi. 2001 TEM observations on symbionts of Joenia annectens (Flagellata Hypermastigida) J. Nat. Hist. 35 471–480

    Article  Google Scholar 

  • Paul, J., A. Sarkar, and A. K. Varma. 1986 In vitro studies of cellulose digesting properties of Staphylococcus saprophyticus isolated from termite gut Curr. Sci. 55 710–714

    CAS  Google Scholar 

  • Paul, J., S. Saxena, and A. Varma. 1993 Ultrastructural studies of the termite (Odontotermes obesus) gut microflora and its cellulolytic properties World J. Microbiol. Biotechnol. 9 108–112

    Article  CAS  Google Scholar 

  • Pierantoni, U. 1936 La simbiosi fisiologica nei termitidi xilophagi e nei loro flagellati intestinali Arch. Zool. Ital. 22 135–173

    Google Scholar 

  • Potrikus, C. J., and J. A. Breznak. 1977 Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites Appl. Environ. Microbiol. 33 392–399

    PubMed  CAS  Google Scholar 

  • Potrikus, C. J., and J. A. Breznak. 1980 Anaerobic degradation of uric acid by gut bacteria of termites Appl. Environ. Microbiol. 40 125–132

    PubMed  CAS  Google Scholar 

  • Potrikus, C. J., and J. A. Breznak. 1981 Gut bacteria recycle uric acid nitrogen in termites: A strategy for nutrient conservation Proc. Natl. Acad. Sci. USA 78 4601–4605

    Article  PubMed  CAS  Google Scholar 

  • Potts, R. C., and P. H. Hewitt. 1973 The distribution of intestinal bacteria and cellulase activity in the harvester termite Trinervitermes trinervoides (Nasutitermitidae) Insect. Soc. 20 215–220

    Article  CAS  Google Scholar 

  • Radek, R., K. Hausmann, and A. Breunig. 1992 Ectobiotic and endocytobiotic bacteria associated with the termite flagellate Joenia annectens Acta Protozool. 31 93–107

    Google Scholar 

  • Radek, R., J. Rösel, and K. Hausmann. 1996 Light and electron microscopic study of the bacterial adhesion to termite flagellates applying lectin cytochemistry Protoplasma 193 105–122

    Article  Google Scholar 

  • Radek, R. 1999a Flagellates, bacteria, and fungi associated with termites: Diversity and function in nutrition—a review Ecotropica 5 183–196

    Google Scholar 

  • Radek, R., and G. Tischendorf. 1999b Bacterial adhesion to different termite flagellates: Ultrastructural and functional evidence for distinct molecular attachment modes Protoplasma 207 43–53

    Article  CAS  Google Scholar 

  • Rasmussen, R. A., and M. A. K. Khalil. 1983 Global production of methane by termites Nature 301 704–705

    Article  Google Scholar 

  • Rath, A. C. 2000 The use of entomopathogenic fungi for control of termites Biocontrol Sci. Technol. 10 563–581

    Article  Google Scholar 

  • Rohrmann, G. F., and A. Y. Rossman. 1980 Nutrient strategies of Macrotermes ukuzii (Isoptera: Termitidae) Pedobiologia 20 61–73

    CAS  Google Scholar 

  • Rother, A., R. Radek, and K. Hausmann. 1999 Characterization of surface structures covering termite flagellates of the family Oxymonadidae and ultrastructure of two oxymonad species, Microrhopalodina multinucleata and Oxymonas sp Eur. J. Protistol. 35 1–16

    Article  Google Scholar 

  • Rouland, C., C. Chararas, and J. Renoux. 1989 Les osidases digestives présentes dans l’intestin moyen, l’intestin postérieur et les glandes salivaires du termite humivore Crenetermes albotarsalis C. R. Acad. Sci. Paris Série III 308 281–285

    CAS  Google Scholar 

  • Rouland, C. 2000 Symbiosis with fungi In: T. Abe, D. E. Bignell, and M. Higashi (Eds.) Termites: Evolution, Sociality, Symbiosis, Ecology Kluwer Academic Publishers Dordrecht, The Netherlands 289–306

    Google Scholar 

  • Rouland-Lefevre C., M. N. Diouf, A. Brauman, and M. Neyra. 2002 Phylogenetic relationships in Termitomyces (family Agaricaceae) based on the nucleotide sequence of ITS: A first approach to elucidate the evolutionary history of the symbiosis between fungus-growing termites and their fungi Molec. Phylogenet. Evol. 22 423–429

    Article  PubMed  CAS  Google Scholar 

  • Sacchi, L., C. A. Nalepa, M. Lenz, C. Bandi, S. Corona, A. Grigolo, and E. Bigliardi. 2000 Transovarial transmission of symbiotic bacteria in Mastotermes darwiniensis (Isoptera: Mastotermitidae): Ultrastructural aspects and phylogenetic implications Ann. Entomol. Soc. Am. 93 1308–1313

    Article  Google Scholar 

  • Salmassi, T. M., and J. R. Leadbetter. 2003 Molecular aspects of CO2-reductive acetogenesis in cultivated spirochetes and the gut community of the termite Zootermopsis angusticollis Microbiology 149 2529–2537

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, M. G. 1996 Biomass of termites and their emissions of methane and carbon dioxide: A global database Global Biogeochem. Cycles 10 543–557

    Article  CAS  Google Scholar 

  • Sands, W. A. 1969 The association of termites and fungi In: K. Krishna and F. M. Weesner (Eds.) Biology of Termites Academic Press New York, NY 1 495–524

    Google Scholar 

  • Schäfer, A., R. Konrad, T. Kuhnigk, P. Kämpfer, H. Hertel, and H. König. 1996 Hemicellulose-degrading bacteria and yeasts from the termite gut J. Appl. Bacteriol. 80 471–478

    Article  PubMed  Google Scholar 

  • Schmitt-Wagner, D., and A. Brune. 1999 Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.) Appl. Environ. Microbiol. 65 4490–4496

    PubMed  CAS  Google Scholar 

  • Schmitt-Wagner, D., M. Friedrich, B. Wagner, and A. Brune. 2003a Axial dynamics, stability, and interspecies similarity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp.) Appl. Environ. Microbiol. 69 6018–6024

    Article  PubMed  CAS  Google Scholar 

  • Schmitt-Wagner, D., M. Friedrich, B. Wagner, and A. Brune. 2003b Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.) Appl. Environ. Microbiol. 69 6007–6017

    Article  PubMed  CAS  Google Scholar 

  • Schultz, J. E., and J. A. Breznak. 1978 Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]; Appl. Environ. Microbiol. 35 930–936

    PubMed  CAS  Google Scholar 

  • Schultz, J. E., and J. A. Breznak. 1979 Cross-feeding of lactate between Streptococcus lactis and Bacteroides sp. isolated from termite hindguts Appl. Environ. Microbiol. 37 1206–1210

    PubMed  CAS  Google Scholar 

  • Seedorf, H., A. Dreisbach, R. Hedderich, S. Shima, and R. K. Thauer. 2004 F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification Arch. Microbiol 182 126–137

    Article  PubMed  CAS  Google Scholar 

  • Shima, S., M. Sordel-Klippert, A. Brioukhanov, A. Netrusov, D. Linder, and R. K. Thauer. 2001 Characterization of a heme-dependent catalase from Methanobrevibacter arboriphilus Appl. Environ. Microbiol 67 3041–3045

    Article  PubMed  CAS  Google Scholar 

  • Shinzato, N., T. Matsumoto, I. Yamaoka, T. Oshima, and A. Yamagishi. 1999 Phylogenetic diversity of symbiotic methanogens living in the hindgut of the lower termite Reticulitermes speratus analyzed by PCR and in situ hybridization Appl. Environ. Microbiol. 65 837–840

    PubMed  CAS  Google Scholar 

  • Shinzato, N., T. Matsumoto, I. Yamaoka, T. Oshima, and A. Yamagishi. 2001 Methanogenic symbionts and the locality of their host lower termites Microb. Environ. 16 43–47

    Article  Google Scholar 

  • Sikorowski, P. P., and A. M. Lawrence. 1998 Transmission of Serratia marcescens (Enterobacteriaceae) in adult Heliothis virescens (Lepidoptera: Noctuidae) laboratory colonies Biol. Control 12 50–55

    Article  Google Scholar 

  • Slaytor, M. 1992 Cellulose digestion in termites and cockroaches: What role do symbionts play? Comp. Biochem. Physiol. 103B 775–784

    CAS  Google Scholar 

  • Slaytor, M., and D. J. Chappell. 1994 Nitrogen metabolism in termites Comp. Biochem. Physiol. 107 1–10

    Article  Google Scholar 

  • Slaytor, M., P. C. Veivers, and N. Lo. 1997 Aerobic and anaerobic metabolism in the higher termite Nasutitermes walkeri (Hill) Insect Biochem. Molec. Biol. 27 291–303

    Article  CAS  Google Scholar 

  • Slaytor, M. 2000 Energy metabolism in the termite gut and its gut microbiota In: T. Abe, D. E. Bignell, and M. Higashi, M. (Eds.) Termites: Evolution, Sociality, Symbiosis, Ecology Kluwer Academic Publishers Dordrecht, The Netherlands 307–332

    Google Scholar 

  • Snel, J., H. J. Blok, H. M. P. Kengen, W. Ludwig, F. G. J. Poelma, J. P. Koopman, and A. D. L. Akkermans. 1994 Phylogenetic characterization of Clostridium related segmented filamentous bacteria in mice based on 16S ribosomal RNA analysis System. Appl. Microbiol 17 172–179

    Article  CAS  Google Scholar 

  • Snel, J., P. P. Heinen, H. J. Blok, R. J. Carman, A. J. Duncan, P. C. Allen, and M. D. Collins. 1995 Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of “Candidatus Arthromitus” Int. J. Syst. Bacteriol 45 780–782

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt, E., P. Schumann, and X. L. Cui. 2004 Reclassification of Cellulosimicrobium variabile Bakalidou et al. 2002 as Isoptericola variabilis gen. nov., comb. nov Int. J. System. Evol. Microbiol. 54 685–688

    Article  CAS  Google Scholar 

  • Stingl, U., and A. Brune. 2003 Phylogenetic diversity and whole-cell hybridization of oxymonad flagellates from the hindgut of the wood-feeding lower termite Reticulitermes flavipes Protist 154 147–155

    Article  PubMed  CAS  Google Scholar 

  • Stingl, U., A. Maass, R. Radek, and A. Brune. 2004 Symbionts of the gut flagellate Staurojoenina sp. from Neotermes cubanus represent a novel, termite-associated lineage of Bacteroidales: Description of “Candidatus Vestibaculum illigatum.” Microbiology 150 2229–2235

    Article  PubMed  CAS  Google Scholar 

  • Stingl, U., R. Radek, and A. Brune. 2005 “Endomicrobia”: Cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes Appl. Environ. Microbiol. 71 1473–1479

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, A., T. Inoue, I. Tayasu, L. Miller, S. Takeichi, and T. Abe. 1998 Methane and hydrogen production in a termite-symbiont system Ecol. Res. 13 241–257

    Article  CAS  Google Scholar 

  • Tamm, S. L. 1980 The ultrastructure of prokaryotic-eukaryotic cell junctions J. Cell. Sci. 44 335–352

    PubMed  CAS  Google Scholar 

  • Tamm, S. L. 1982 Flagellated epibiotic bacteria propel a eucaryotic cell J. Cell. Biol. 94 697–709

    Article  PubMed  CAS  Google Scholar 

  • Taprab, Y., M. Ohkuma, T. Johjima, Y. Maeda, S. Moriya, T. Inoue, P. Suwanarit, N. Noparatnaraporn, and T. Kudo. 2002 Molecular phylogeny of symbiotic basidiomycetes of fungus-growing termites in Thailand and their relationship with the host Biosci. Biotechnol. Biochem. 66 1159–1163

    Article  PubMed  CAS  Google Scholar 

  • Tayasu, I., A. Sugimoto, E. Wada, and T. Abe. 1994 Xylophagous termites depending on atmospheric nitrogen Naturwissenschaften 81 229–231

    Google Scholar 

  • Tayasu, I., T. Abe, P. Eggleton, and D. E. Bignell. 1997 Nitrogen and carbon isotope ratios in termites: An indicator of trophic habit along the gradient from wood-feeding to soil-feeding Ecol. Entomol. 22 343–351

    Article  Google Scholar 

  • Tayasu, I. 1998 The use of carbon and nitrogen isotope ratios in termite research Ecol. Res. 13 377–387

    Article  Google Scholar 

  • Terra, W. R. 1990 Evolution of digestive systems of insects Ann. Rev. Entomol. 35 181–200

    Article  Google Scholar 

  • Thauer, R. K., K. Jungermann, and K. Decker. 1977 Energy conservation in chemotrophic anaerobic bacteria Bacteriol. Rev. 41 100–180

    PubMed  CAS  Google Scholar 

  • Thayer, D. W. 1976 Facultative wood-digesting bacteria from the hind-gut of the termite Reticulitermes hesperus J. Gen. Microbiol. 95 287–296

    Article  Google Scholar 

  • Thayer, D. W. 1978 Carboxymethylcellulase produced by facultative bacteria from the hind-gut of the termite Reticulitermes hesperus J. Gen. Microbiol. 106 13–18

    Article  PubMed  CAS  Google Scholar 

  • Tholen, A., B. Schink, and A. Brune. 1997 The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp FEMS Microbiol. Ecol. 24 137–149

    Article  CAS  Google Scholar 

  • Tholen, A., and A. Brune. 1999 Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.) Appl. Environ. Microbiol. 65 4497–4505

    PubMed  CAS  Google Scholar 

  • Tholen, A., and A. Brune. 2000 Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes Environ. Microbiol. 2 436–449

    Article  PubMed  CAS  Google Scholar 

  • Thongaram, T., S. Kosono, M. Ohkuma, Y. Hongoh, M. Kitada, T. Yoshinaka, S. Trakulnaleamsai, N. Noparatnaraporn, and T. Kudo. 2003 Gut of higher termites as a niche for alkaliphiles as shown by culturebased and culture-independent studies Microb. Environ 18 152–159

    Article  Google Scholar 

  • Thongaram, T., Y. Hongoh, S. Kosono, M. Ohkuma, S. Trakulnaleamsai, N. Noparatnaraporn, and T. Kudo. 2005 Comparison of bacterial communities in the alkaline gut segment among various species of higher termites Extremophiles 9 229–238

    Article  PubMed  Google Scholar 

  • To, L., L. Margulis, and A. T. W. Cheung. 1978 Pillotinas and hollandinas: Distribution and behaviour of large spirochaetes symbiotic in termites Microbios 22 103–133

    PubMed  CAS  Google Scholar 

  • To, L. P., L. Margulis, D. Chase, and W. L. Nutting. 1980 The symbiotic microbial community of the Sonoran desert termite: Pterotermes occidentis Biosystems 13 109–137

    Article  PubMed  CAS  Google Scholar 

  • Tokuda, G., I. Yamaoka, and H. Noda. 2000 Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki) Appl. Environ. Microbiol. 66 2199–2207

    Article  PubMed  CAS  Google Scholar 

  • Tokuda, G., T. Nakamura, R. Murakami, and I. Yamaoka. 2001 Morphology of the digestive system in the wood-feeding termite Nasutitermes takasagoensis (Shiraki) [Isoptera: Termitidae]; Zool. Sci. 18 869–877

    Article  Google Scholar 

  • Tokuda, G., N. Lo, H. Watanabe, G. Arakawa, T. Matsumoto, and H. Noda. 2004 Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage Mol. Ecol 13 3219–3228

    Article  PubMed  CAS  Google Scholar 

  • Tokura, M., M. Ohkuma, and T. Kudo. 2000 Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites FEMS Microbiol. Ecol. 33 233–240

    Article  PubMed  CAS  Google Scholar 

  • Trinkerl, M., A. Breunig, R. Schauder, and H. König. 1990 Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the hindgut of a termite System. Appl. Microbiol. 13 372–377

    Article  CAS  Google Scholar 

  • Veivers, P. C., R. W. O’Brien, and M. Slaytor. 1980 The redox state of the gut of termites J. Insect Physiol. 26 75–77

    Article  Google Scholar 

  • Veivers, P. C., R. W. O’Brien, and M. Slaytor. 1982 Role of bacteria in maintaining the redox potential in the hindgut of termites and preventing entry of foreign bacteria J. Insect Physiol. 28 947–951

    Article  Google Scholar 

  • Vu, A. T., N. C. Ngyen, and J. R. Leadbetter. 2004 Iron reduction in the metal-rich guts of wood-feeding termites Geobiology 2 239–247

    Article  CAS  Google Scholar 

  • Watanabe, H., and G. Tokuda. 2001 Animal cellulases Cell. Molec. Life Sci. 58 1167–1178

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, H., K. Nakashima, H. Saito, and M. Slaytor. 2002 New endo-beta-1,4-glucanases from the parabasalian symbionts, Pseudotrichonympha grassii and Holomastigotoides mirabile of Coptotermes termites Cell. Mol. Life Sci. 59 1983–1992

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, Y., N. Shinzato, and T. Fukatsu. 2003 Isolation of actinomycetes from termites’ guts Biosci. Biotechnol. Biochem. 67 1797–1801

    Article  PubMed  CAS  Google Scholar 

  • Wenzel, M., I. Schönig, M. Berchtold, P. Kämpfer, and H. König. 2002 Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis J. Appl. Microbiol. 92 32–40

    Article  PubMed  CAS  Google Scholar 

  • Wenzel, M., R. Radek, G. Brugerolle, and H. König. 2003 Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis Eur. J. Protistol. 39 11–24

    Article  Google Scholar 

  • Wier, A., J. Ashen, and L. Margulis. 2000 Canaleparolina darwiniensis, gen. nov., sp. nov., and other pillotinaceous spirochetes from insects Int. Microbiol. 3 213–223

    PubMed  CAS  Google Scholar 

  • Williams, C. M., P. C. Veivers, M. Slaytor, and S. V. Cleland. 1994 Atmospheric carbon dioxide and acetogenesis in the termite Nasutitermes walkeri (Hill) Comp. Biochem. Physiol. 107A 113–118

    Article  CAS  Google Scholar 

  • Yamin, M. A. 1979 Termite flagellates Sociobiology 4 1–119

    Google Scholar 

  • Yang, H., D. Schmitt-Wagner, U. Stingl, and A. Brune. 2005 Niche heterogeneity determines bacterial community structure in the in the termite gut (Reticulitermes santonensis) Environ. Microbiol. 7(7) 916–932

    Article  CAS  Google Scholar 

  • Yara, K., K. Jahana, and H. Hayashi. 1989 In situ morphology of the gut microbiota of the fungus-growing termite Odontotermes formosanus (Termitidae: Macrotermitinae) Sociobiology 15 247–260

    Google Scholar 

  • Yoshimura, T., T. Fujino, T. Ito, K. Tsunoda, and M. Takahashi. 1996 Ingestion and decomposition of wood and cellulose by the protozoa in the hindgut of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) as evidenced by polarizing and transmission electron microscopy Holzforschung 50 99–104

    Article  CAS  Google Scholar 

  • Zoberi, M. H., and J. K. Grace. 1990 Fungi associated with the subterranean termite Reticulitermes flavipes in Ontario Mycologia 82 289–294

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Brune, A. (2006). Symbiotic Associations Between Termites and Prokaryotes. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30741-9_17

Download citation

Publish with us

Policies and ethics