## Introduction

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic.

The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifracticals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.

- 77 Citations
- 1 Mentions
- 57k Downloads

### Editors and affiliations

## Bibliographic information

- DOI https://doi.org/10.1007/978-1-4614-1806-1
- Copyright Information Springer Science+Business Media, LLC 2011
- Publisher Name Springer, New York, NY
- Print ISBN 978-1-4614-1805-4
- Online ISBN 978-1-4614-1806-1
- eBook Packages Mathematics and Statistics Reference Module Computer Science and Engineering
- Number Of Entries 113
- About this book