Skip to main content

A Brief Introduction to the Protein Phosphatase Families

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 365))

Abstract

This chapter introduces the main families of protein phosphatases encoded by the human genome and discusses their classification, overall structure, regulation, and physiological functions in human health and diseases. The topics of redundancy, diversity, and dynamic expression in individual cell types are briefly introduced, and the importance of technological approaches to phosphatase research is emphasized.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hunter, T. (1998) The role of tyrosine phosphorylation in cell growth and disease. Harvey Lect. 94, 81–119.

    PubMed  Google Scholar 

  2. Andersen, J. N., Jansen, P. G., Echwald, S. M., et al. (2004) A genomic perspective on PTPs: gene structure, pseudogenes, and genetic disease linkage. FASEB J. 18, 8–13.

    Article  PubMed  CAS  Google Scholar 

  3. Alonso, A., Sasin, J., Osterman, A., et al. (2004) The PTPs in the human genome. Cell 117, 699–711.

    Article  PubMed  CAS  Google Scholar 

  4. Bottini, N., Bottini, E., Gloria-Bottini, F., and Mustelin, T. (2002) LMPTP and human disease: in search of biochemical mechanisms. Arch. Immunol. Ther. Exp. (AITE) 50, 95–104.

    CAS  Google Scholar 

  5. Hunter, T. and Sefton, B. M. (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl. Acad. Sci. USA 77, 1311–1315.

    Article  PubMed  CAS  Google Scholar 

  6. Chow, K., Ng, D., Stokes, R., and Johnson, P. (1994) Protein tyrosine phosphorylation in Mycobacterium tuberculosis. FEMS Microbiol. Lett. 124, 203–207.

    Article  PubMed  CAS  Google Scholar 

  7. Kennelly, P. J. (2003) Archaeal protein kinases and protein phosphatases: Insights from genomics and biochemistry. Biochem. J. 370, 373–389.

    Article  PubMed  CAS  Google Scholar 

  8. Cozzone, A. J., Grangeasse, C., Doublet, P., and Duclos, B. (2004) Protein phosphorylation on tyrosine in bacteria. Arch. Microbiol. 181, 171–181.

    Article  PubMed  CAS  Google Scholar 

  9. Walton, K. M. and Dixon, J. E. (1993) Protein tyrosine phosphatases. Annu. Rev. Biochem. 62, 101–120.

    Article  PubMed  CAS  Google Scholar 

  10. Tonks, N. K. and Neel, B. G. (1996) From form to function: signaling by PTPs. Cell 87, 365–368.

    Article  PubMed  CAS  Google Scholar 

  11. Mustelin, T., Vang, T., and Bottini, N. (2005) Protein tyrosine phosphatases and the immune response. Nat. Rev. Immunol. 5, 43–57.

    Article  PubMed  CAS  Google Scholar 

  12. Stoker, A. W. (2005) Protein tyrosine phosphatases and signaling. J. Endocrinol. 185, 19–33.

    Article  PubMed  CAS  Google Scholar 

  13. Kappert, K., Peters, K. G., Bohmer, F. D., and Ostman, A. (2005) Tyrosine phosphatases in vessel wall signaling. Cardiovasc. Res. 65, 587–598.

    Article  PubMed  CAS  Google Scholar 

  14. Rebay, I., Silver, S. J., and Tootle, T. L. (2005) New vision from Eyes absent: transcription factors as enzymes. Trends Genet. 21, 163–171.

    Article  PubMed  CAS  Google Scholar 

  15. Wong, W. and Scott, J. D. (2004) AKAP signalling complexes: focal points in space and time. Nat. Rev. Mol. Cell. Biol. 5, 959–970.

    Article  PubMed  CAS  Google Scholar 

  16. Cohen, P. T. (2002) Protein phosphatase 1: targeted in many directions. J. Cell. Sci. 115, 241–256.

    PubMed  CAS  Google Scholar 

  17. Ceulemans, H. and Bollen, M. (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol. Rev. 84, 1–39.

    Article  PubMed  CAS  Google Scholar 

  18. Feng, G. S. (1999) Shp-2 tyrosine phosphatase: Signaling one cell or many. Exp. Cell Res. 253, 47–54

    Article  PubMed  CAS  Google Scholar 

  19. Mustelin, T., Coggeshall, K. M., and Altman, A. (1989) Rapid activation of the T cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase. Proc. Natl. Acad. Sci. USA. 86, 6302–6306.

    Article  PubMed  CAS  Google Scholar 

  20. Bottini, N., Stefanini, L., Williams, S., et al. (2002) Activation of ZAP-70 through specific dephosphorylation at the inhibitory Tyr-292 by the low molecular weight phosphotyrosine phosphatase (LMPTP). J. Biol. Chem. 277, 24,220–24,224.

    Article  PubMed  CAS  Google Scholar 

  21. Cote, J. F., Charest, A., Wagner, J., and Tremblay, M. L. (1998) Combination of gene targeting and substrate trapping to identify substrates of PTPs using PTP-PEST as a model. Biochemistry 37, 13,128–13,137.

    Article  PubMed  CAS  Google Scholar 

  22. Saxton, T. M., Henkemeyer, M., Gasca, S., et al. (1997) Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J. 16, 2352–2364.

    Article  PubMed  CAS  Google Scholar 

  23. Gronda, M., Arab, S., Iafrate, B., Suzuki, H., and Zanke, B. (2001) Hematopoietic PTP suppresses extracellular stimulus-regulated kinase activation. Mol. Cell. Biol. 21, 6851–6858.

    Article  PubMed  CAS  Google Scholar 

  24. Elchebly, M., Payette, P., Michaliszyn, E., et al. (1999) Increased insulin sensitivity and obesity resistance in mice lacking the PTP-1B gene. Science 283, 1544–1548.

    Article  PubMed  CAS  Google Scholar 

  25. You-Ten, K. E., Muise, E. S., Itie, A., et al. (1997) Impaired bone marrow microenvironment and immune function in T cell PTP-deficient mice. J. Exp. Med. 186, 683–693.

    Article  PubMed  CAS  Google Scholar 

  26. Byth, K. F., Conroy, L. A., Howlett, S., et al. (1996) CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development in the selection of CD4+CD8+ thymocytes and B-cell maturation. J. Exp. Med. 183, 1707–1718.

    Article  PubMed  CAS  Google Scholar 

  27. Wharram, B. L., Goyal, M., Gillespie, P. J., et al. (2000) Altered podocyte structure in GLEPP1 (Ptpro)-deficient mice associated with hypertension and low glomerular filtration rate. Clin. Invest. 106, 1281–1290.

    Article  CAS  Google Scholar 

  28. Uetani, N., Kato, K., Ogura, H., et al. (2000) Impaired learning with enhanced hippocampal long-term potentiation in PTPdelta-deficient mice. EMBO J. 19, 2775–2785.

    Article  PubMed  CAS  Google Scholar 

  29. Di Cristofano, A., Pesce, B., Cordon-Cardo, C., and Pandolfi, P. P. (1998) Pten is essential for embryonic development and tumour suppression. Nat. Genet. 19, 348–355.

    Article  PubMed  Google Scholar 

  30. Koop, E. A., Gebbink, M. F. B. G., Sweeney, T. E., et al. (2005) Impaired flow-induced dilation in mesenteric resistance arteries from receptor protein tyrosine phosphatase-μ-deficient mice. Am. J. Physiol. (Heart Circ. Physiol.) 288, H1218–H1223.

    Article  CAS  Google Scholar 

  31. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. and Sudarsanam, S. (2002) The protein kinase complement of the human genome. Science 298, 1912–1934.

    Article  PubMed  CAS  Google Scholar 

  32. Schonthal, A. H. (1998) Role of PP2A in intracellular signal transduction pathways. Front. Biosci. 3, D1262–1273.

    PubMed  CAS  Google Scholar 

  33. Lee, J. O. Yang, H., Georgescu, M. M., et al. (1999) Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99, 323–334.

    Article  PubMed  CAS  Google Scholar 

  34. Begley, M. J. Taylor, G. S., Kim, S. A., Veine, D. M., Dixon, J. E., and Stuckey, J. A. (2003) Crystal structure of a phosphoinositide phosphatase, MTMR2: insights into myotubular myopathy and Charcot-Marie-Tooth Syndrome. Mol. Cell 12, 1391–1402.

    Article  PubMed  CAS  Google Scholar 

  35. Rayapureddi, J. P., Kattamuri, C., Chan, F. H., and Hegde, R. S. (2005) Characterization of a plant, tyrosine-specific phosphatase of the aspartyl class. Biochemistry 44, 751–8.

    Article  PubMed  CAS  Google Scholar 

  36. Roberts, A., Lee, S. Y., McCullagh, E., Silversmith, R. E., and Wemmer, D. E. (2005) Ybiv from Escherichia coli K12 is a HAD phosphatase. Proteins 58, 790–801.

    Article  PubMed  CAS  Google Scholar 

  37. Roberts, S. J., Stewart, A. J., Sadler, P. J., and Farquharson, C. (2004) Human PHOSPHO1 exhibits high specific phosphoethanolamine and phosphocholine phosphatase activities. Biochem. J. 382, 59–65.

    Article  PubMed  CAS  Google Scholar 

  38. Allegrini, S., Scaloni, A., Careddu, M. G., et al. (2004) Mechanistic studies on bovine cytosolic 5′-nucleotidase II, an enzyme belonging to the HAD superfamily. Eur. J. Biochem. 271, 4881–4891.

    Article  PubMed  CAS  Google Scholar 

  39. Lunn, J. E., Ashton, A. R., Hatch, M. D., and Heldt, H. W. (2000) Purification, molecular cloning, and sequence analysis of sucrose-6F-phosphate phosphohydrolase from plants. Proc. Natl. Acad. Sci. USA 97, 12,914–12,919.

    Article  PubMed  CAS  Google Scholar 

  40. Cronin, A., Mowbray, S., Durk, H., et al. (2003) The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proc. Natl. Acad. Sci. USA 100, 1552–1557.

    Article  PubMed  CAS  Google Scholar 

  41. Gohla, A., Birkenfeld, J., and Bokoch, G. M. (2005) Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat. Cell Biol. 7, 21–29.

    Article  PubMed  CAS  Google Scholar 

  42. Yeo, M., Lin, P. S., Dahmus, M. E., and Gill, G. N. (2003) A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J. Biol. Chem. 278, 26,078–26,085.

    Article  PubMed  CAS  Google Scholar 

  43. Peisach, E., Selengut, J. D., Dunaway-Mariano, D., and Allen, K. N. (2004) X-ray crystal structure of the hypothetical phosphotyrosine phosphatase MDP-1 of the haloacid dehalogenase superfamily. Biochemistry 43, 12,770–12,779.

    Article  PubMed  CAS  Google Scholar 

  44. Stewart, A. J., Schmid, R., Blindauer, C. A., Paisey, S. J., and Farquharson, C. (2003) Comparative modelling of human PHOSPHO1 reveals a new group of phosphatases within the haloacid dehalogenase superfamily. Protein Eng. 16, 889–895.

    Article  PubMed  CAS  Google Scholar 

  45. Allen, K. N. and Dunaway-Mariano, D. (2004) Phosphoryl group transfer: evolution of a catalytic scaffold. Trends Biochem. Sci. 29, 495–503.

    Article  PubMed  CAS  Google Scholar 

  46. Lahiri, S. D., Zhang, G., Dai, J., Dunaway-Mariano, D., and Allen, K. N. (2004) Analysis of the substrate specificity loop of the HAD superfamily cap domain. Biochemistry 43, 2812–2820.

    Article  PubMed  CAS  Google Scholar 

  47. Charbonneau, H., Tonks, N. K., Kumar, S., et al. (1989) Human placenta protein-tyrosine phosphatase: amino-acid sequence and relationship to a family of receptor-like proteins. Proc. Natl. Acad. Sci. USA 86, 5252–5256.

    Article  PubMed  CAS  Google Scholar 

  48. Maehama, T. and Dixon, J. E. (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13,375–13,378.

    Article  PubMed  CAS  Google Scholar 

  49. Wishart, M. J. and Dixon, J. E. (2002) PTEN and myotubularins phosphatases: from 3-phosphoinositide dephosphorylation to disease. Trends Cell Biol. 12, 579–585.

    Article  PubMed  CAS  Google Scholar 

  50. Alonso, A., Sasin, J., Burkhalter, S., et al. (2004) The minimal essential core of a cysteine-based PTP revealed by a novel 16-kDa VH1-like phosphatase, VHZ. J. Biol. Chem. 279, 35,768–35,774.

    Article  PubMed  CAS  Google Scholar 

  51. Bordo, D. and Bork, P. (2002) The rhodanese/Cdc25 phosphatase superfamily. Sequence-structure-function relations. EMBO Rep. 3, 741–746.

    Article  PubMed  CAS  Google Scholar 

  52. Alonso, A., Rojas, A., Godzik, A., and Mustelin, T. (2003) The dual-specific PTP family. Top. Curr. Genet. 5, 333–358.

    Article  Google Scholar 

  53. Vincent, C., Duclos, B., Grangeasse, C., et al. (2000) Relationship between exopolysaccharide production and protein-tyrosine phosphorylation in Gram-negative bacteria. J. Mol. Biol. 304, 311–321.

    Article  PubMed  CAS  Google Scholar 

  54. Musumeci, L., Tautz, L., Perego, M., Mustelin, T., and Bottini, N. (2005) Characterization of the YfkJ protein tyrosine phosphatase of Bacillus subtilis and Bacillus anthracis. J. Bacteriol., in press.

    Google Scholar 

  55. Kashio, N., Matsumoto, W., Parker, S., and Rothstein, D.M. (1998). The second domain of the CD45 protein tyrosine phosphatase is critical for interleukin-2 secretion and substrate recruitment of TCRζ in vivo. J. Biol. Chem. 273, 33856–33863.

    Article  PubMed  CAS  Google Scholar 

  56. Bolino, A., Muglia, M., Conforti, F. L., et al. (2000) Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat. Genet. 25, 17–19.

    Article  PubMed  CAS  Google Scholar 

  57. Azzedine, H., Bolino, A., Taieb, T., et al. (2003) Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am. J. Hum. Genet. 72, 1141–1153.

    Article  PubMed  CAS  Google Scholar 

  58. Mustelin, T. and Hunter, T. (2002) Meeting at mitosis: cell cycle-specific regulation of c-Src by RPTPα Science’s STKE. http://stke.sciencemag.org/cgi/content/full/OC_sigtrans;2002/115/pe3.

  59. Tailor, P., Williams, S., Gilman, J., Couture, C., and Mustelin, T. (1997) Regulation of the low molecular weight phosphotyrosine phosphatase (LMPTP) by phosphorylation at tyrosines 131 and 132. J. Biol. Chem. 272, 5371–5376.

    Article  PubMed  CAS  Google Scholar 

  60. Alonso, A., Rahmouni, S., Williams, S., et al. (2003) Tyrosine phosphorylation of VHR phosphatase by ZAP-70. Nat. Immunol. 4, 44–48.

    Article  PubMed  CAS  Google Scholar 

  61. Dorfman, K., Carrasco, D., Gruda, M., Ryan, C., Lira, S. A., and Bravo, R. (1996) Disruption of the erp/mkp-1 gene does not affect mouse development: normal MAP kinase activity in ERP/MKP-1-deficient fibroblasts. Oncogene 13, 925–931.

    PubMed  CAS  Google Scholar 

  62. Hasegawa, K., Martin, F., Huang, G., Tumas, D., Diehl, L., and Chan, A. C. (2004) PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science 303, 685–689.

    Article  PubMed  CAS  Google Scholar 

  63. Saha, S., Bardelli, A., Buckhaults, P., et al. (2001) A phosphatase associated with metastasis of colorectal cancer. Science 294, 1343–1346.

    Article  PubMed  CAS  Google Scholar 

  64. Tartaglia, M., Mehler, E. L., Goldberg, R., et al. (2001) Mutations in PTPN11, encoding the PTP SHP-2, cause Noonan syndrome. Nat. Genet. 29, 465–468

    Article  PubMed  CAS  Google Scholar 

  65. Minassian, B. A., Lee, J. R., Herbrick, J. A., et al. (1998) Mutations in a gene encoding a novel PTP cause progressive myoclonus epilepsy. Nat. Genet. 20, 171–174.

    Article  PubMed  CAS  Google Scholar 

  66. Laporte, J., Hu, L. J., Kretz, C., et al. (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat. Genet. 13, 175–182.

    Article  PubMed  CAS  Google Scholar 

  67. Tchilian, E. Z., Wallace, D. L., Wells, R. S., Flower, D. R., Morgan, G., and Beverley, P. C. L. (2001) A deletion in the gene encoding the CD45 antigen in a patient with SCID. J. Immunol. 166, 1308–1313.

    PubMed  CAS  Google Scholar 

  68. Kung, C., Pingel, J. T., Heikinheimo, M., et al. (2000) Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nat. Med. 6, 343–345.

    Article  PubMed  CAS  Google Scholar 

  69. Bottini, N., Musumeci, L., Alonso, A., et al. (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type 1 diabetes. Nat. Genet. 36, 337–338.

    Article  PubMed  CAS  Google Scholar 

  70. Smyth, D., Cooper, J. D., Collins, J. E., et al. (2004) Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 53, 3020–3023.

    Article  PubMed  CAS  Google Scholar 

  71. Ladner, M. B., Bottini, N., Valdes, A. M., and Noble, J. A. (2005) Association of the single-nucleotide polymorphism C1858T of the PTPN22 gene with type 1 diabetes. Hum. Immunol. 66, 60–64.

    Article  PubMed  CAS  Google Scholar 

  72. Kawasaki, E., Hutton, J. C., and Eisenbarth, G. S (1996) Molecular cloning and characterization of the human transmembrane PTP homologue, phogrin, an autoantigen of type I diabetes. Biochem. Biophys. Res. Commun. 227, 440–447.

    Article  PubMed  CAS  Google Scholar 

  73. Begovich, A. B., Carlton, V. E., Honigberg, L. A., et al. (2004) A missense single-nucleotide polymorphism in a gene encoding a PTP (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330–337.

    Article  PubMed  CAS  Google Scholar 

  74. Kyogoku, C., Langefeld, C. D., Ortmann, W. A., et al. (2004) Genetic association of the R620W polymorphism of PTP PTPN22 with human SLE. Am. J. Hum. Genet. 75, 504–507.

    Article  PubMed  CAS  Google Scholar 

  75. Velaga, M. R., Wilson, V., Jennings, C. E., et al. (2004) The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J. Clin. Endocrinol. Metab. 89, 5862–5865.

    Article  PubMed  CAS  Google Scholar 

  76. Mena-Duran, A. V., Togo, S. H., Bazhenova, L., et al. (2005) SHP1 expression in bone marrow biopsies of myelodysplastic syndrome patients: a new prognostic marker. Br. J. Haematol., 129, 791–794.

    Article  PubMed  CAS  Google Scholar 

  77. Fonatsch, C., Haase, D., Freund, M., Bartels, H., and Tesch, H. (1991) Partial trisomy 1q. A nonrandom primary chromosomal abnormality in myelodysplastic syndromes? Cancer Genet. Cytogenet. 56, 243–253.

    Article  PubMed  CAS  Google Scholar 

  78. Zanke, B., Squire, J. Griesser, H. et al. (1994) A hematopoietic PTP (HePTP) gene that is amplified and overexpressed in myeloid malignancies maps to chromosome 1q32.1. Leukemia 8, 236–244.

    PubMed  CAS  Google Scholar 

  79. Schweiger, S. and Schneider, R. (2003) The MID1/PP2A complex: a key to the pathogenesis of Opitz BBB/G syndrome. Bioessays 25, 356–366.

    Article  PubMed  CAS  Google Scholar 

  80. Ito, A., Koma, Y.-I., and Watabe, K. (2003) A mutation in protein phosphatase type 2A as a cause of melanoma progression. Histol. Histopathol. 18, 1313–1319.

    PubMed  CAS  Google Scholar 

  81. Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., and Hahn, W. C. (2004) Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5, 127–136.

    Article  PubMed  CAS  Google Scholar 

  82. Tautz, L., Bruckner, S., Sareth, S., et al. (2005) Inhibition of Yersinia tyrosine phosphatase by furanyl salicylate compounds. J. Biol. Chem. 280, 9400–9408.

    Article  PubMed  CAS  Google Scholar 

  83. Liang, F., Huang, Z., Lee, S.-Y., et al. (2003) Aurintricarboxylic acid blocks both in vitro and in vivo activity of YopH, an essential virulent factor from Yersinia that cause the plague. J. Biol. Chem. 278, 41,734–41,741.

    Article  PubMed  CAS  Google Scholar 

  84. Lazo, J. S. and Wipf, P. (2003) Small molecule regulation of phosphatase-dependent cell signaling pathways. Oncol. Res. 13, 347–352.

    PubMed  Google Scholar 

  85. Ducruet, A. P., Vogt, A., Wipf, P., and Lazo, J. (2005) Dual specificity protein phosphatases: therapeutic targets for cancer and Alzheimer’s disease. Annu. Rev. Pharmacol. Toxicol. 45, 725–750.

    Article  PubMed  CAS  Google Scholar 

  86. Pellecchia, M., Becattini, B., Crowell, K. J., Fattorusso, R., Forino, M., Fragai, M., Jung, D., Mustelin, T., and Tautz, L. (2004) NMR-based techniques in the hit identification and optimization process. Expert Opin. Ther. Targets 8, 597–611.

    Article  PubMed  CAS  Google Scholar 

  87. Umezawa, K., Kawakami, M., and Watanabe, T. (2003) Molecular design and biological activities of protein-tyrosine phosphatase inhibitors. Pharmacol. Ther. 99, 15–24.

    Article  PubMed  CAS  Google Scholar 

  88. Li, X., Bhandari, A., Holmes, C. P., and Szardenings, A. K. (2004) Alpha,alpha-difluoro-beta-ketophosphonates as potent inhibitors of protein tyrosine phosphatase 1B. Bioorg. Med. Chem. Lett. 14, 4301–4306.

    Article  PubMed  CAS  Google Scholar 

  89. Bialy, L. and Waldmann, H. (2005) Inhibitors of protein tyrosine phosphatases: next-generation drugs? Angew. Chem. Int. Ed. Engl., 44, 3814–3839.

    Article  PubMed  CAS  Google Scholar 

  90. Pei, Z., Liu, G., Lubben, T. H., and Szczepankiewicz, B. G. (2004) Inhibition of protein tyrosine phosphatase 1B as a potential treatment of diabetes and obesity. Curr. Pharm. Des. 10, 3481–3504.

    Article  PubMed  CAS  Google Scholar 

  91. Black, E., Breed, J., Breeze, A.L., et al. (2005) Structure-based design of protein tyrosine phosphatase-1B inhibitors. Bioorg. Med. Chem. Lett. 15, 2503–2507.

    Article  PubMed  CAS  Google Scholar 

  92. Kumar, S., Zhou, B., Liang, F., Wang, W. Q., Huang, Z., and Zhang, Z.-Y. (2004) Activity-based probes for protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA 101, 7943–7948.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Mustelin, T. (2007). A Brief Introduction to the Protein Phosphatase Families. In: Moorhead, G. (eds) Protein Phosphatase Protocols. Methods in Molecular Biology, vol 365. Springer, Totowa, NJ. https://doi.org/10.1385/1-59745-267-X:9

Download citation

  • DOI: https://doi.org/10.1385/1-59745-267-X:9

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-1-58829-711-2

  • Online ISBN: 978-1-59745-267-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics