Skip to main content

Validation of Short Interfering RNA Knockdowns by Quantitative Real-Time PCR

  • Protocol
Protocols for Nucleic Acid Analysis by Nonradioactive Probes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 353))

Abstract

RNA interference (RNAi) is a natural mechanism, that is triggered by the introduction of double-stranded RNA into a cell. The long double-stranded RNA is then processed into short interfering RNA (siRNA) that mediates sequence-specific degradation of homologous transcripts. This phenomenon can be exploited to experimentally trigger RNAi and downregulate gene expression by transfecting mammalian cells with synthetic siRNA. Thus, siRNAs can be designed to specifically silence the expression of genes bearing a particular target sequence. In this chapter, we present methods and procedures for alidating the effects of siRNA-based gene silencing on target gene expression. To illustrate our approach, we use examples from our analysis of a Cancer Gene Library of 278 siRNAs targeting 139 classic oncogenes and tumor suppressor genes (Qiagen Inc., Germantown, MD). Specifically, this library was used for high-throughput RNAi phenotype analysis followed by gene expression analysis to validate gene silencing for siRNA that produced a phenotype. Methods and protocols are presented that illustrate how sequence-specific gene silencing of effective siRNAs are analyzed and validated by quantitative real-time PCR assays to measure the extent of target gene silencing, as well as effects on various gene expression end points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hannon, G. J. (2002) RNA interference. Nature 418, 244–251.

    Article  PubMed  CAS  Google Scholar 

  2. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    Article  PubMed  CAS  Google Scholar 

  3. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  4. Hemann, M. T., Fridman, J. S., Zilfou, J. T., et al. (2003) An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat. Genet. 33, 396–400.

    Article  PubMed  CAS  Google Scholar 

  5. Carmell, M. A., Zhang, L., Conklin, D. S., Hannon, G. J., and Rosenquist, T. A. (2003) Germline transmission of RNAi in mice. Nat. Struct. Biol. 10, 91–92.

    Article  PubMed  CAS  Google Scholar 

  6. Tiscornia, G., Singer, O., Ikawa, M., and Verma, I. M. (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. USA 100, 1844–1848.

    Article  PubMed  CAS  Google Scholar 

  7. Tuschl, T. (2001) RNA interference and small interfering RNAs. Chembiochem. 2, 239–245.

    Article  PubMed  CAS  Google Scholar 

  8. Caplen, N. J. (2003) RNAi as a gene therapy approach. Expert. Opin. Biol. Ther. 3, 575–586.

    Article  PubMed  CAS  Google Scholar 

  9. Wilda, M., Fuchs, U., Wossmann, W., and Borkhardt, A. (2002) Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 21, 5716–5724.

    Article  PubMed  CAS  Google Scholar 

  10. Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247.

    Article  PubMed  CAS  Google Scholar 

  11. Scherr, M., Battmer, K., Winkler, T., Heidenreich, O., Ganser, A., and Eder, M. (2003) Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 101, 1566–1569.

    Article  PubMed  CAS  Google Scholar 

  12. Kamath, R. S. and Ahringer, J. (2003) Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321.

    Article  PubMed  CAS  Google Scholar 

  13. Pothof, J., van Haaften, G., Thijssen, K., et al. (2003) Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. Genes Dev. 17, 443–448.

    Article  PubMed  CAS  Google Scholar 

  14. Lum, L., Yao, S., Mozer, B., et al. (2003) Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045.

    Article  PubMed  CAS  Google Scholar 

  15. Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.

    Article  PubMed  CAS  Google Scholar 

  16. Hammond, L. A., Davidson, K., Lawrence, R., et al. (2001) Exploring the mechanisms of action of FB642 at the cellular level. J. Cancer Res. Clin. Oncol. 127, 301–313.

    Article  PubMed  CAS  Google Scholar 

  17. Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

    Article  PubMed  CAS  Google Scholar 

  18. Azorsa, O.D., Mousses, S., Caplen, J. N. (2004) Gene silencing through RNA interfererence: Potential for therapeutics and functional genomics. Letters in Peptide Science 10, 361–372.

    Article  Google Scholar 

  19. Bustin, S. A. (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 29, 23–39.

    Article  PubMed  CAS  Google Scholar 

  20. Schmittgen, T. D. (2001) Real-time quantitative PCR. Methods 25, 383–385.

    Article  PubMed  CAS  Google Scholar 

  21. Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25, 402–408.

    Article  PubMed  CAS  Google Scholar 

  22. Ginzinger, D. G. (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp. Hematol. 30, 503–512.

    Article  PubMed  CAS  Google Scholar 

  23. Schmittgen, T. D., Zakrajsek, B. A., Mills, A. G., Gorn, V., Singer, M. J., and Reed, M. W. (2000) Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal. Biochem. 285, 194–204.

    Article  PubMed  CAS  Google Scholar 

  24. Schmittgen, T. D. and Zakrajsek, B. A. (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J. Biochem. Biophys. Methods 46, 69–81.

    Article  PubMed  CAS  Google Scholar 

  25. Chen, C. Y. and Shyu, A. B. (1994) Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements. Mol. Cell. Biol. 14, 8471–8482.

    PubMed  CAS  Google Scholar 

  26. Iyer, V. R., Eisen, M. B., Ross, D. T., et al. (1999) The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87.

    Article  PubMed  CAS  Google Scholar 

  27. Giulietti, A., Overbergh, L., Valckx, D., Decallonne, B., Bouillon, R., and Mathieu, C. (2001) An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25, 386–401.

    Article  PubMed  CAS  Google Scholar 

  28. Niesters, H. G. (2001) Quantitation of viral load using real-time amplification techniques. Methods 25, 419–429.

    Article  PubMed  CAS  Google Scholar 

  29. Longo, M. C., Berninger, M. S., and Hartley, J. L. (1990) Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 93, 125–128.

    Article  PubMed  CAS  Google Scholar 

  30. Varshney, U., Hutcheon, T., and van de Sande, J. H. (1988) Sequence analysis, expression, and conservation of Escherichia coli uracil DNA glycosylase and its gene (ung). J. Biol. Chem. 263, 7776–7784.

    PubMed  CAS  Google Scholar 

  31. Lindahl, T., Ljungquist, S., Siegert, W., Nyberg, B., and Sperens, B. (1977) DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J. Biol. Chem. 252, 3286–3294.

    PubMed  CAS  Google Scholar 

  32. Erlich, H. A., Gelfand, D., and Sninsky, J. J. (1991) Recent advances in the polymerase chain reaction. Science 252, 1643–1651.

    Article  PubMed  CAS  Google Scholar 

  33. Wilfinger, W. W., Mackey, K., and Chomczynski, P. (1997) Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques 22, 474–476, 478–481.

    PubMed  CAS  Google Scholar 

  34. Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M. (1996) Real time quantitative PCR. Genome Res. 6, 986–994.

    Article  PubMed  CAS  Google Scholar 

  35. Lakowicz, J. R. and Keating, S. (1983) Binding of an indole derivative to micelles as quantified by phase-sensitive detection of fluorescence. J. Biol. Chem. 258, 5519–5524.

    PubMed  CAS  Google Scholar 

  36. Thellin, O., Zorzi, W., Lakaye, B., et al. (1999) Housekeeping genes as internal standards: use and limits. J. Biotechnol. 75, 291–295.

    Article  PubMed  CAS  Google Scholar 

  37. Vandesompele, J., De Preter, K., Pattyn, F., et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, RESEARCH0034.1–0034.11.

    Article  Google Scholar 

  38. Mullis, K. B. (1990) Target amplification for DNA analysis by the polymerase chain reaction. Ann. Biol. Clin. (Paris) 48, 579–582.

    CAS  Google Scholar 

  39. Walker, N. J. (2002) Tech.Sight. A technique whose time has come. Science 296, 557–559.

    Article  PubMed  CAS  Google Scholar 

  40. Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Tuzmen, S., Kiefer, J., Mousses, S. (2007). Validation of Short Interfering RNA Knockdowns by Quantitative Real-Time PCR. In: Hilario, E., Mackay, J. (eds) Protocols for Nucleic Acid Analysis by Nonradioactive Probes. Methods in Molecular Biology, vol 353. Humana Press. https://doi.org/10.1385/1-59745-229-7:177

Download citation

  • DOI: https://doi.org/10.1385/1-59745-229-7:177

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-430-2

  • Online ISBN: 978-1-59745-229-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics