Two-Dimensional Differential In-Gel Electrophoresis (DIGE) of Leaf and Roots of Lycopersicon esculentum

  • Matthew Keeler
  • Jessica Letarte
  • Emily Hattrup
  • Fatimah Hickman
  • Paul A. Haynes
Part of the Methods in Molecular Biology book series (MIMB, volume 355)


In this report we present a detailed protocol for the analysis of differential protein expression between two plant tissue samples. The protocol involves harvesting of leaves and roots from mature tomato plants, preparing protein extracts from the harvested tissues, fluorescent labeling of each sample prior to differential in-gel electrophoresis (DIGE), first- and second-dimension electrophoretic separations, and image analysis to visualize and quantify differential protein expression. This protocol is adaptable for use with a wide variety of plant materials and can be used to measure protein expression changes occurring in response to abiotic stress, biotic stress, genetic manipulation, selective breeding, and many other conditions. In addition to the detailed protocol, we also present the results of a representative experiment analyzing subtle changes in protein expression in the roots of tomato plants grown under control and salt-stress conditions.

Key Words

2D protein gel electrophoresis differential in-gel electrophoresis DIGE plant protein tomato CyDye protein staining differential wavelength fluorescence imaging Lycopersicon esculentum 


  1. 1.
    O’Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.PubMedGoogle Scholar
  2. 2.
    Gorg, A., Obermaier, C., Boguth, G., et al. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037–1053.CrossRefPubMedGoogle Scholar
  3. 3.
    Haynes, P. A., Fripp, N., and Aebersold, R. (1998) Identification of gel separated proteins by liquid chromatography-electrospray tandem mass spectrometry: comparison of methods and their limitations. Electrophoresis 19, 939–945.CrossRefPubMedGoogle Scholar
  4. 4.
    Haynes, P., Miller, I., Aebersold, R., et al. (1998) Proteins of rat serum I: establishing a reference 2-DE map by immunodetection and microbore high performance liquid chromatography-electrospray mass spectrometry. Electrophoresis 19, 1484–1492.CrossRefPubMedGoogle Scholar
  5. 5.
    Cooper, B., Eckert, D., Andon, N. L., Yates, J. R., and Haynes, P. A. (2003) Investigative proteomics: identification of an unknown plant virus from infected plants using mass spectrometry. J. Am. Soc. Mass Spectrom. 14, 736–741.CrossRefPubMedGoogle Scholar
  6. 6.
    Andon, N. L., Hollingworth, S., Koller, A., Greenland, A. J., Yates, J. R. III, and Haynes, P. A. (2002) Proteomic characterization of wheat amyloplasts using identification of proteins by tandem mass spectrometry. Proteomics 2, 1156–1168.CrossRefPubMedGoogle Scholar
  7. 7.
    Unlu, M., Morgan, M. E., and Minden, J. S. (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–2077.CrossRefPubMedGoogle Scholar
  8. 8.
    Tonge, R., Shaw, J., Middleton, B., et al. (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1, 377–396.CrossRefPubMedGoogle Scholar
  9. 9.
    Von Eggeling, F., Gawriljuk, A., Fiedler, W., et al. (2001) Fluorescent dual colour 2D-protein gel electrophoresis for rapid detection of differences in protein pattern with standard image analysis software. Int. J. Mol. Med. 8, 373–377.Google Scholar
  10. 10.
    Zhou, G., Li, H., DeCamp, D., et al. (2002) 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol. Cell. Proteomics 1, 117–124.CrossRefPubMedGoogle Scholar
  11. 11.
    Shaw, J., Rowlinson, R., Nickson, J., et al. (2003) Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 3, 1181–1195.CrossRefPubMedGoogle Scholar
  12. 12.
    Hu, Y., Wang, G., Chen, G. Y., Fu, X., and Yao, S. Q. (2003) Proteome analysis of Saccharomyces cerevisiae under metal stress by two-dimensional differential gel electrophoresis. Electrophoresis 24, 1458–1470.CrossRefPubMedGoogle Scholar
  13. 13.
    Kreil, D. P., Karp, N. A., and Lilley, K. S. (2004) DNA microarray normalization methods can remove bias from differential protein expression analysis of 2D difference gel electrophoresis results. Bioinformatics 20, 2026–2034.CrossRefPubMedGoogle Scholar
  14. 14.
    Karp, N. A., Kreil, D. P., and Lilley, K. S. (2004) Determining a significant change in protein expression with DeCyder during a pair-wise comparison using two-dimensional difference gel electrophoresis. Proteomics 4, 1421–1432.CrossRefPubMedGoogle Scholar
  15. 15.
    Alban, A., David, S. O., Bjorkesten, L., et al. (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3, 36–44.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee, J. R., Baxter, T. M., Yamaguchi, H., Wang, T. C., Goldenring, J. R., and Anderson, M. G. (2003) Differential protein analysis of spasomolytic polypeptide expressing metaplasia using laser capture microdissection and two-dimensional difference gel electrophoresis. Appl. Immunohistochem. Mol. Morphol. 11, 188–193.PubMedGoogle Scholar
  17. 17.
    Friedman, D. B., Hill, S., Keller, J. W., et al. (2004) Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 4, 793–811.CrossRefPubMedGoogle Scholar
  18. 18.
    Somiari, R. I., Sullivan, A., Russell, S., et al. (2003) High-throughput proteomic analysis of human infiltrating ductal carcinoma of the breast. Proteomics 3, 1863–1873.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang, D., Jensen, R., Gendeh, G., Williams, K., and Pallavicini, M. G. (2004) Proteome and transcriptome analysis of retinoic acid-induced differentiation of human acute promyelocytic leukemia cells, NB4. J. Proteome Res. 3, 627–635.CrossRefPubMedGoogle Scholar
  20. 20.
    Ruepp, S. U., Tonge, R. P., Shaw, J., Wallis, N., and Pognan, F. (2002) Genomics and proteomics analysis of acetaminophen toxicity in mouse liver. Toxicol. Sci. 65, 135–150.CrossRefPubMedGoogle Scholar
  21. 21.
    Kleno, T. G., Leonardsen, L. R., Kjeldal, H. O., Laursen, S. M., Jensen, O. N., and Baunsgaard, D. (2004) Mechanisms of hydrazine toxicity in rat liver investigated by proteomics and multivariate data analysis. Proteomics 4, 868–880.CrossRefPubMedGoogle Scholar
  22. 22.
    Swatton, J. E., Prabakaran, S., Karp, N. A., Lilley, K. S., and Bahn, S. (2004) Protein profiling of human postmortem brain using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE). Mol. Psychiatry 9, 128–143.CrossRefPubMedGoogle Scholar
  23. 23.
    Van den Bergh, G., Clerens, S., Vandesande, F., and Arckens, L. (2003) Reversed-phase high-performance liquid chromatography prefractionation prior to two-dimensional difference gel electrophoresis and mass spectrometry identifies new differentially expressed proteins between striate cortex of kitten and adult cat. Electrophoresis 24, 1471–1481.CrossRefPubMedGoogle Scholar
  24. 24.
    Yan, J. X., Devenish, A. T., Wait, R., Stone, T., Lewis, S., and Fowler, S. (2002) Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics 2, 1682–1698.CrossRefPubMedGoogle Scholar
  25. 25.
    Damerval, C., de Vienne, D., Zivy, M., and Thiellement, H. (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7, 52–54.CrossRefGoogle Scholar
  26. 26.
    Koller, A., Washburn, M. P., Lange, B. M., et al. (2002) Proteomic survey of metabolic pathways in rice. Proc. Natl. Acad. Sci. U. S. A. 99, 11969–11974.CrossRefPubMedGoogle Scholar
  27. 27.
    Thiellement, H., Zivy, M., Colas des Francs, C., Bahrman, N., and Granier, F. (1987) Two-dimensional gel electrophoresis of proteins as a tool in wheat genetics. Biochimie 69, 781–787.Google Scholar
  28. 28.
    Tsugita, A., Kawakami, T., Uchiyama, Y., Kamo, M., Miyatake, N., and Nozu, Y. (1994) Separation and characterization of rice proteins. Electrophoresis 15, 708–720.CrossRefPubMedGoogle Scholar
  29. 29.
    Wilm, M., Shevchenko, A., Houthaeve, T., et al. (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379, 466–469.CrossRefPubMedGoogle Scholar
  30. 30.
    Andon, N. L., Eckert, D., Yates, J. R. III, and Haynes, P. A. (2003) High-throughput functional affinity purification of mannose binding proteins from Oryza sativa. Proteomics 3, 1270–1278.CrossRefPubMedGoogle Scholar
  31. 31.
    Berggren, K., Chernokalskaya, E., Steinberg, T. H., et al. (2000) Background-free, high sensitivity staining of proteins in one-and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis 21, 2509–2521.CrossRefPubMedGoogle Scholar
  32. 32.
    Mackintosh, J. A., Choi, H. Y., Bae, S. H., et al. (2003) A fluorescent natural product for ultra sensitive detection of proteins in one-dimensional and two-dimensional gel electrophoresis. Proteomics 3, 2273–2288.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Matthew Keeler
    • 1
  • Jessica Letarte
    • 2
  • Emily Hattrup
    • 1
  • Fatimah Hickman
    • 2
  • Paul A. Haynes
    • 2
  1. 1.Department of Biochemistry and Molecular BiophysicsThe University of ArizonaTucson
  2. 2.Bio5 Institute for Collaborative BioresearchThe University of ArizonaTucson

Personalised recommendations