Advertisement

Animal Models for Heart Failure

  • Sudhiranjan Gupta
  • Subha Sen
Part of the Methods in Molecular Medicine book series (MIMM, volume 129)

Abstract

Heart failure (HF) is a major cause of morbidity and mortality worldwide. Although many therapeutic means are available to prolong the life of HF patients, why HF develops is still poorly understood. Investigators still seek a truly appropriate animal model that will reliably mimic human HF, so that the cause of the disease can be targeted and proper therapeutic modalities implemented. HF is a complex condition in which multiple molecular mechanisms interact, resulting in compromised cardiac function and often death. Once this elusive animal model is found, investigators will be able to translate findings from the model to human disease, thereby allowing analysis of the molecular changes and dissecting out multiple complicated changes in HF cascade. In this chapter, we describe the methodology that is used to analyze both transcriptional and translational molecular changes and correlate them with cardiac function to assess the cause-and-effect relationship to HF. We used one particular animal model of HF as an example (induced by causing overexpression of myotrophin specifically in the heart) that allowed us to analyze the changes during initiation, progression, and transition of hypertrophy to HF. We have also summarized some other animal models of HF currently available to study mechanisms of HF.

Key Words

Genetic alteration compromised cardiac function molecular changes myotrophin gene expression 

References

  1. 1.
    Cleland, J. G., Khand, A., and Clark, A. L. (2001) The HF epidemic: exactly how big is it? Eur. Heart J. 22, 623–626.CrossRefPubMedGoogle Scholar
  2. 2.
    Mann, D. L. and Bristow, M. R. (2005) Mechanisms and models in HF: the biomechanical model and beyond. Circulation 111, 2837–2849.CrossRefPubMedGoogle Scholar
  3. 3.
    Hoshijima, M. and Chien, K. R. (2002) Mixed signals in HF: cancer rules. J. Clin. Invest. 109, 849–855.PubMedGoogle Scholar
  4. 4.
    McMurray, J. and Pfeffer, M. A. (2002) New therapeutic options in congestive HF: Part I. Circulation 105, 2099–2106.CrossRefPubMedGoogle Scholar
  5. 5.
    McMurray, J. and Pfeffer, M. A. (2002) New therapeutic options in congestive HF: Part II. Circulation 105, 2223–2228.CrossRefPubMedGoogle Scholar
  6. 6.
    Dignam, J. D., Martin, P. L., Shastry, B. S., and Roeder, R. G. (1983) Eukaryotic gene transcription with purified components. Methods Enzymol. 101, 582–598.CrossRefPubMedGoogle Scholar
  7. 7.
    Iwaki, K., Sukhatme, V. P., Shubeita, H. E., and Chien, K. R. (1990) Alpha-and beta-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an alpha 1-mediated response. J. Biol. Chem. 265, 13,809–13,817.PubMedGoogle Scholar
  8. 8.
    Tamayo, P., Slonim, D. Mesirov, J., et al. (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96, 2907–2912.CrossRefPubMedGoogle Scholar
  9. 9.
    Sen, S., Kundu, G., Mekhail, N., Castel, J., Misono, K., and Healy, B. (1990) Myotrophin: purification of a novel peptide from spontaneously hypertensive rat heart that influences myocardial growth. J. Biol. Chem. 265, 16,635–16,643.PubMedGoogle Scholar
  10. 10.
    Sil, P., Misono, K., and Sen, S. (1993) Myotrophin in human cardiomyopathic heart. Circ. Res. 73, 98–108.PubMedGoogle Scholar
  11. 11.
    Mukherjee, D. P., McTiernan, C. F., and Sen, S. (1993) Myotrophin induces early response genes and enhances cardiac gene expression. Hypertension 21, 142–148.PubMedGoogle Scholar
  12. 12.
    Sil, P., Kandaswamy, V., and Sen, S. (1998) Increased protein kinase C activity in myotrophin-induced myocyte growth. Circ. Res. 82, 1173–1188.PubMedGoogle Scholar
  13. 13.
    Sivasubramanian, N., Adhikary, G., Sil, P. C., and Sen, S. (1996) Cardiac myotrophin exhibits rel/NF-kappa B interacting activity in vitro. J. Biol. Chem. 271, 2812–2816.CrossRefPubMedGoogle Scholar
  14. 14.
    Anderson, K. M., Berrebi-Bertrand, I., Kirkpatrick, R. B., et al. (1999) cDNA sequence and characterization of the gene that encodes human myotrophin/V-1 protein, a mediator of cardiac hypertrophy. J. Mol. Cell. Cardiol. 31, 705–719.CrossRefPubMedGoogle Scholar
  15. 15.
    Gupta, S. and Sen, S. (2002) Myotrophin-kappaB DNA interaction in the initiation process of cardiac hypertrophy. Biochim. Biophys. Acta 1589, 247–260.CrossRefPubMedGoogle Scholar
  16. 16.
    Gupta, S., Purcell, N. H., Lin, A., and Sen, S. (2002) Activation of nuclear factor-kappaB is necessary for myotrophin-induced cardiac hypertrophy. J. Cell Biol. 159, 1019–1028.CrossRefPubMedGoogle Scholar
  17. 17.
    Adhikary, G., Gupta, S., Sil, P., Saad, Y., and Sen, S. (2005) Characterization and functional significance of myotrophin: a gene with multiple transcripts. Gene 353, 31–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Subramaniam, A., Jones, W. K., Gulick, J., Wert, S., Neumann, J., and Robbins, J. (1991) Tissue-specific regulation of the alpha-myosin heavy chain gene promoter in transgenic mice. J. Biol. Chem. 266, 24,613–24,620.PubMedGoogle Scholar
  19. 19.
    Sarkar, S., Leaman, D. W., Gupta, S., et al. (2004) Cardiac overexpression of myotrophin triggers myocardial hypertrophy and HF in transgenic mice. J. Biol. Chem. 279, 20,422–20,434.CrossRefPubMedGoogle Scholar
  20. 20.
    Kubota, T., McTiernan, C. F., Frye, C. S., Demetris, A. J., and Feldman, A. M. (1997) Cardiac-specific overexpression of tumor necrosis factor-alpha causes lethal myocarditis in transgenic mice. J. Card. Fail. 3, 117–124.CrossRefPubMedGoogle Scholar
  21. 21.
    Kubota, T., McTiernan, C. F., Frye, C. S., et al. (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ. Res. 81, 627–635.PubMedGoogle Scholar
  22. 22.
    Nishizuka, Y. (1986) Studies and perspectives of protein kinase C. Science 233, 305–312.CrossRefPubMedGoogle Scholar
  23. 23.
    Bowling, N., Walsh, R. A., Song, G., et al. (1999) Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart. Circulation 99, 384–391.PubMedGoogle Scholar
  24. 24.
    Wakasaki, H., Koya, D., Schoen, F. J., et al. (1997) Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc. Natl. Acad. Sci. USA 94, 9320–9325.CrossRefPubMedGoogle Scholar
  25. 25.
    Bowman, J. C., Steinberg, S. F., Jiang, T., Geenen, D. L., Fishman, G. I., and Buttrick, P. M. (1997) Expression of protein kinase C beta in the heart causes hypertrophy in adult mice and sudden death in neonates. J. Clin. Invest. 100, 2189–2195.CrossRefPubMedGoogle Scholar
  26. 26.
    Roman, B. B., Geenen, D. L., Leitges, M., and Buttrick, P. M. (2001) PKC-beta is not necessary for cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 280, H2264–H2270.PubMedGoogle Scholar
  27. 27.
    Xuan, Y. T., Tang, X. L., Banerjee, S., et al. (1999) Nuclear factor-kappaB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ. Res. 84, 1095–1109.PubMedGoogle Scholar
  28. 28.
    Morgan, E. N., Boyle, E. M., Jr., Yun, W., et al. (1999) An essential role for NF-kappaB in the cardioadaptive response to ischemia. Ann. Thorac. Surg. 68, 377–382.CrossRefPubMedGoogle Scholar
  29. 29.
    Ritchie, M. E. (1998) Nuclear factor-kappaB is selectively and markedly activated in humans with unstable angina pectoris. Circulation 98, 1707–1713.PubMedGoogle Scholar
  30. 30.
    Wong, S. C., Fukuchi, M., Melnyk, P., Rodger, I., and Giaid, A. (1998) Induction of cyclooxygenase-2 and activation of nuclear factor-kappaB in myocardium of patients with congestive HF. Circulation 98, 100–103.PubMedGoogle Scholar
  31. 31.
    Groner, F., Rubio, M., Schulte-Euler, P., et al. (2004) Single-channel gating and regulation of human L-type calcium channels in cardiomyocytes of transgenic mice. Biochem. Biophys. Res. Commun. 314, 878–884.CrossRefPubMedGoogle Scholar
  32. 32.
    Sato, Y., Ferguson, D. G., Sako, H., et al. (1998) Cardiac-specific overexpression of mouse cardiac calsequestrin is associated with depressed cardiovascular function and hypertrophy in transgenic mice. J. Biol. Chem. 273, 28,470–28,477.CrossRefPubMedGoogle Scholar
  33. 33.
    Jones, L. R., Suzuki, Y. J., Wang, W., et al. (1998) Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J. Clin. Invest. 101, 1385–1393.CrossRefPubMedGoogle Scholar
  34. 34.
    Linck, B., Boknik, P., Huke, S., et al. (2000) Functional properties of transgenic mouse hearts overexpressing both calsequestrin and the Na+-Ca2+ exchanger. J. Pharmacol. Exp. Ther. 294, 648–657.PubMedGoogle Scholar
  35. 35.
    Ito, K., Yan, X., Feng, X., Manning, W. J., Dillmann, W. H., and Lorell, B. H. (2001) Transgenic expression of sarcoplasmic reticulum Ca2+ ATPase modifies the transition from hypertrophy to early HF. Circ. Res. 89, 422–429.CrossRefPubMedGoogle Scholar
  36. 36.
    Periasamy, M., Reed, T. D., Liu, L. H., et al. (1999) Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) gene. J. Biol. Chem. 274, 2556–2562.CrossRefPubMedGoogle Scholar
  37. 37.
    Schultz Jel, J., Glascock, B. J., Witt, S. A., et al. (2004) Accelerated onset of HF in mice during pressure overload with chronically decreased SERCA2 calcium pump activity. Am. J. Physiol. Heart. Circ. Physiol. 286, H1146–H1153.CrossRefPubMedGoogle Scholar
  38. 38.
    Meyer, M., Schillinger, W., Pieske, B., et al. (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92, 778–784.PubMedGoogle Scholar
  39. 39.
    Neumann, J., Boknik, P., DePaoli-Roach, A. A., et al. (1998) Targeted overexpression of phospholamban to mouse atrium depresses Ca2+ transport and contractility. J. Mol. Cell. Cardiol. 30, 1991–2002.CrossRefPubMedGoogle Scholar
  40. 40.
    Dash, R., Kadambi, V., Schmidt, A. G., et al. (2001) Interactions between phospholamban and beta-adrenergic drive may lead to cardiomyopathy and early mortality. Circulation 103, 889–896.PubMedGoogle Scholar
  41. 41.
    Schmitt, J. P., Kamisago, M., Asahi, M., et al. (2003) Dilated cardiomyopathy and HF caused by a mutation in phospholamban. Science 299, 1410–1413.CrossRefPubMedGoogle Scholar
  42. 42.
    Crabtree, G. R. (1999) Generic signals and specific outcomes: signaling through calcium2+, calcineurin and NF-AT. Cell 96, 611–614.CrossRefPubMedGoogle Scholar
  43. 43.
    Molkentin, J. D., Lu, J. R., Antos, C. L., et al. (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228.CrossRefPubMedGoogle Scholar
  44. 44.
    Dong, D., Duan, Y., Guo, J., et al. (2003) Overexpression of calcineurin in mouse causes sudden cardiac death associated with decreased density of K+ hannels. Cardiovasc. Res. 57, 320–332.CrossRefPubMedGoogle Scholar
  45. 45.
    Molkentin, J. D. and Dorn, G. W. II. (2001) Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 63, 391–426.CrossRefPubMedGoogle Scholar
  46. 46.
    Rockman, H. A., Ross, R. S., Harris, A. N., et al. (1991) Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 88, 8277–8281. [Erratum re Fig. 2B is noted in Proc. Natl. Acad. Sci. USA 88, 9907.]CrossRefPubMedGoogle Scholar
  47. 47.
    Boluyt, M. O., Robinson, K. G., Meredith, A. L., et al. (2005) Heart failure after long-term supravalvular aortic constriction in rats. Am. J. Hypertens. 18(2 Pt 1), 202–212.CrossRefPubMedGoogle Scholar
  48. 48.
    Esposito, G., Rapacciuolo, A., Naga Prasad, S. V., et al. (2002) Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 105, 85–92.CrossRefPubMedGoogle Scholar
  49. 49.
    Carabello, B. A. (1996) Models of volume overload hypertrophy. J. Card. Fail. 2, 55–64.CrossRefPubMedGoogle Scholar
  50. 50.
    Scheuermann-Freestone, M., Freestone, N. S., Langenickel, T., Hohnel, K., Dietz, R., and Willenbrock, R. (2001) A new model of congestive HF in the mouse due to chronic volume overload. Eur. J. Heart Fail. 5, 535–543.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Sudhiranjan Gupta
    • 1
  • Subha Sen
    • 1
  1. 1.Department of Molecular CardiologyThe Cleveland Clinic FoundationCleveland

Personalised recommendations