Quantitative Assay for Mouse Atherosclerosis in the Aortic Root

  • Julie Baglione
  • Jonathan D. Smith
Part of the Methods in Molecular Medicine book series (MIMM, volume 129)


The mouse has become the preferred species for genetic manipulation aimed at creating and studying models for human disease. Although mice are highly resistant to atherosclerosis, dietary induction and, more frequently, gene knockout and transgenic mice have been widely used to study factors that alter the susceptibility to atherosclerosis. Although there are several ways to assess atherosclerosis in mice, measurement of the aortic root lesion area is a commonly used, medium-throughput method that allows for histological examination of the lesions. Here, we provide the detailed methods for the quantitative analysis of mouse aortic root lesion area.

Key Words

Atherosclerosis mouse histology image analysis lesion area measurement 


  1. 1.
    Smith, J. D. and Breslow, J. L. (1997) The emergence of mouse models of atherosclerosis and their relevance to clinical research. J. Intern. Med. 242, 99–109.CrossRefPubMedGoogle Scholar
  2. 2.
    Paigen, B., Havens, M. B., and Morrow, A. (1985) Effect of 3-methylcholanthrene on the development of aortic lesions in mice. Cancer Res. 45, 3850–3855.PubMedGoogle Scholar
  3. 3.
    Paigen, B., Morrow, A., Brandon, C., Mitchell, D., and Holmes, P. (1985) Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 57, 65–73.CrossRefPubMedGoogle Scholar
  4. 4.
    Paigen, B., Morrow, A., Holmes, P. A., Mitchell, D., and Williams, R. A. (1987) Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 68, 231–240.CrossRefPubMedGoogle Scholar
  5. 5.
    Paigen, B., Mitchell, D., Reue, K., Morrow, A., Lusis, A. J., and LeBoeuf, R. C. (1987) Ath-1, a gene determining atherosclerosis susceptibility and high density lipoprotein levels in mice. Proc. Natl. Acad. Sci. USA 84, 3763–3767.CrossRefPubMedGoogle Scholar
  6. 6.
    Wang, X., Ria, M., Kelmenson, P. M., et al. (2005) Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nat. Genet. 37, 365–372.CrossRefPubMedGoogle Scholar
  7. 7.
    Plump, A. S., Smith, J. D., Hayek, T., et al. (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343–353.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang, S. H., Reddick, R. L., Piedrahita, J. A., and Maeda, N. (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258, 468–471.CrossRefPubMedGoogle Scholar
  9. 9.
    Ishibashi, S., Brown, M. S., Goldstein, J. L., Gerard, R. D., Hammer, R. E., and Herz, J. (1993) Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92, 883–893.CrossRefPubMedGoogle Scholar
  10. 10.
    Tangirala, R. K., Rubin, E. M., and Palinski, W. (1995) Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J. Lipid. Res. 36, 2320–2328.PubMedGoogle Scholar
  11. 11.
    Febbraio, M., Podrez, E. A., Smith, J. D., et al. (2000) Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin. Invest 105, 1049–1056.CrossRefPubMedGoogle Scholar
  12. 12.
    Lichtman, A. H., Clinton, S. K., Iiyama, K., Connelly, P. W., Libby, P., and Cybulsky, M. I. (1999) Hyperlipidemia and atherosclerotic lesion development in LDL receptor-deficient mice fed defined semipurified diets with and without cholate. Arterioscler. Thromb. Vasc. Biol. 19, 1938–1944.PubMedGoogle Scholar
  13. 13.
    Rudel, L. L., Kelley, K., Sawyer, J. K., Shah, R., and Wilson, M. D. (1998) Dietary monounsaturated fatty acids promote aortic atherosclerosis in LDL receptor-null, human ApoB100-overexpressing transgenic mice. Arterioscler. Thromb. Vasc. Biol. 18, 1818–1827.PubMedGoogle Scholar
  14. 14.
    Nakashima, Y., Plump, A. S., Raines, E. W., Breslow, J. L., and Ross, R. (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler. Thromb. 14, 133–140.PubMedGoogle Scholar
  15. 15.
    Seo, H. S., Lombardi, D. M., Polinsky, P., et al. (1997) Peripheral vascular stenosis in apolipoprotein E-deficient mice. Potential roles of lipid deposition, medial atrophy, and adventitial inflammation. Arterioscler. Thromb. Vasc. Biol. 17, 3593–3601.PubMedGoogle Scholar
  16. 16.
    Rosenfeld, M. E., Kauser, K., Martin-McNulty, B., Polinsky, P., Schwartz, S. M., and Rubanyi, G. M. (2002) Estrogen inhibits the initiation of fatty streaks throughout the vasculature but does not inhibit intra-plaque hemorrhage and the progression of established lesions in apolipoprotein E deficient mice. Atherosclerosis 164, 251–259.CrossRefPubMedGoogle Scholar
  17. 17.
    VanderLaan, P. A., Reardon, C. A., and Getz, G. S. (2004) Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler. Thromb. Vasc. Biol. 24, 12–22.CrossRefPubMedGoogle Scholar
  18. 18.
    Daugherty, A. and Whitman, S. C. (2003) Quantification of atherosclerosis in mice, Methods Mol. Biol. 209, 293–309.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Julie Baglione
    • 1
  • Jonathan D. Smith
    • 1
  1. 1.Department of Cell BiologyThe Cleveland Clinic FoundationCleveland

Personalised recommendations