Generation of Transgenic Mice for Cardiovascular Research

  • Xiao-Li Tian
  • Qing K. Wang
Part of the Methods in Molecular Medicine book series (MIMM, volume 129)


The transgenic mouse technology is a powerful tool that can be used for creating animal models for cardiovascular disease to identify molecular pathogenic mechanisms and for identifying the physiological functions of a novel gene. A transgenic animal can be generated by several methods, which include microinjection of a DNA fragment into the pronucleus, embryonic stem cell manipulation and injection, sperm-mediated transgenesis, and viral infection of preimplanted embryos. The microinjection method is one of the most widely used approaches. This method involves four steps: (1) collection of fertilized eggs from the superovulated female, (2) injection of DNA into the pronucleus of fertilized eggs, (3) transfer of the injected eggs back into the oviduct of a pseudopregnant foster recipient, allowing the eggs to develop into pups, and (4) identification of the transgenic founder and establishment of transgenic lines through further breeding.

Key Words

Transgene cardiovascular disease animal model fertilized egg foster superovulation pronucleus breeding pseudopregnant 


  1. 1.
    Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A., and Ruddle, F. H. (1980) Genetic transformation of mouse embryos by microinjectio n of purified DNA. Proc. Natl. Acad. Sci. USA 77, 7380–7384.CrossRefPubMedGoogle Scholar
  2. 2.
    Wagner, E. F., Stewart, T. A., and Mintz, B. (1981) The human beta-globin gene and a functional viral thymidine kinase gene in developing mice. Proc. Natl. Acad. Sci. USA 78, 5016–5020.CrossRefPubMedGoogle Scholar
  3. 3.
    Palmiter, R. D., Brinster, R. L., Hammer, R. E., et al. (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300, 611–615.CrossRefPubMedGoogle Scholar
  4. 4.
    Tian, X. L., Chen, L. Y., and Hu, R. L. (1995) Transgenic Animals: Principles, Techniques and Application. Changchun Science and Technology, Chan.gchun.Google Scholar
  5. 5.
    Tian, X. L., Pinto, Y. M., Costerousse, O., et al. (2004) Over-expression of angiotensin converting enzyme-1 augments cardiac hypertrophy in transgenic rats. Hum. Mol. Genet. 13, 1441–1450.CrossRefPubMedGoogle Scholar
  6. 6.
    Wall, R. J., Kerr, D. E., and Bondioli, K. R. (1997) Transgenic dairy cattle: genetic engineering on a large scale. J. Dairy. Sci. 80, 2213–2224.CrossRefPubMedGoogle Scholar
  7. 7.
    Denman, J., Hayes, M., O’Day, C., et al. (1991) Transgenic expression of a variant of human tissue-type plasminogen activator in goat milk: purification and characterization of the recombinant enzyme. Biotechnology (N.Y.) 9, 839–843.CrossRefGoogle Scholar
  8. 8.
    Hammer, R. E., Pursel, V. G., Rexroad, C. E. J., et al. (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315, 680–683.CrossRefPubMedGoogle Scholar
  9. 9.
    Mullins, J. J. and Ganten, D. (1990) Transgenic animals: new approaches to hypertension research. J. Hypertens. Suppl. 8, S35–S37.PubMedGoogle Scholar
  10. 10.
    Hogan, B., Beddington, R., Costantini, F., and Lacy, E. (1994) Manipulating the Mouse Embryo: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  11. 11.
    Jaenisch, R. and Mintz, B. (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc. Natl. Acad. Sci. USA 71, 1250–1254.CrossRefPubMedGoogle Scholar
  12. 12.
    Maione, B., Lavitrano, M., Spadafora, C., and Kiessling, A. A. (1998) Sperm-mediated gene transfer in mice. Mol. Reprod. Dev. 50, 406–409.CrossRefPubMedGoogle Scholar
  13. 13.
    Lavitrano, M., Forni, M., Varzi, V., et al. (1997) Sperm-mediated gene transfer: production of pigs transgenic for a human regulator of complement activation. Transplant. Proc. 29, 3508–3509.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhao, S., Maxwell, S., Jimenez-Beristain, A., et al. (2004) Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in mid-brain dopaminergic neurons. Eur. J. Neurosci. 19, 1133–1140.CrossRefPubMedGoogle Scholar
  15. 15.
    Psarras, S., Karagianni, N., Kellendonk, C., et al. (2004) Gene transfer and genetic modification of embryonic stem cells by Cre-and Cre-PR-expressing MESV-based retroviral vectors. J. Gene Med. 6, 32–42.CrossRefPubMedGoogle Scholar
  16. 16.
    Guglielmi, L., Battu, S., Le Bert, M., Faucher, J. L., Cardot, P. J., and Denizot, Y. (2004) Mouse embryonic stem cell sorting for the generation of transgenic mice by sedimentation field-flow fractionation. Anal. Chem. 76, 1580–1585.CrossRefPubMedGoogle Scholar
  17. 17.
    Rindt, H., Subramaniam, A., and Robbins, J. (1995) An in vivo analysis of transcriptional elements in the mouse alpha-myosin heavy chain gene promoter. Transgenic. Res. 4, 397–405.CrossRefPubMedGoogle Scholar
  18. 18.
    Loughna, S., Yuan, H. T., and Woolf, A. S. (1998) Effects of oxygen on vascular patterning in Tie1/LacZ metanephric kidneys in vitro. Biochem. Biophys. Res. Commun. 247, 361–366.CrossRefPubMedGoogle Scholar
  19. 19.
    Schlaeger, T. M., Bartunkova, S., Lawitts, J. A., et al. (1997) Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc. Natl. Acad. Sci. USA 94, 3058–3063.CrossRefPubMedGoogle Scholar
  20. 20.
    Schedl, A., Beermann, F., Thies, E., Montoliu, L., Kelsey, G., and Schutz, G. (1992) Transgenic mice generated by pronuclear injection of a yeast artificial chromosome. Nucleic. Acids. Res. 20, 3073–3077.CrossRefPubMedGoogle Scholar
  21. 21.
    Imhof, M. O., Chatellard, P., and Mermod, N. (2000) A regulatory network for the efficient control of transgene expression. J. Gene Med. 2, 107–116.CrossRefPubMedGoogle Scholar
  22. 22.
    Franz, W. M., Breves, D., Klingel, K., Brem, G., Hofschneider, P. H., and Kandolf, R. (1993) Heart-specific targeting of firefly luciferase by the myosin light chain-2 promoter and developmental regulation in transgenic mice. Circ. Res. 73, 629–638.PubMedGoogle Scholar
  23. 23.
    London, B., Jeron, A., Zhou, J., et al. (1998) Long QT and ventricular arrhythmias in transgenic mice expressing the N terminus and first transmembrane segment of a voltage-gated potassium channel. Proc. Natl. Acad. Sci. USA 95, 2926–2931.CrossRefPubMedGoogle Scholar
  24. 24.
    Schinke, M., Baltatu, O., Bohm, M., et al. (1999) Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen. Proc. Natl. Acad. Sci. USA 96, 3975–3980.CrossRefPubMedGoogle Scholar
  25. 25.
    Hasuwa, H., Kaseda, K., Einarsdottir, T., and Okabe, M. (2002) Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett. 532, 227–230.CrossRefPubMedGoogle Scholar
  26. 26.
    Lu, W., Yamamoto, V., Ortega, B., and Baltimore, D. (2004) Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119, 97–108.CrossRefPubMedGoogle Scholar
  27. 27.
    Tian, X. L., Yong, S. L., Wan, X., et al. (2004) Mechanisms by which SCN5A mutation N1325S causes cardiac arrhythmias and sudden death in vivo. Cardiovasc. Res. 61, 256–267.CrossRefPubMedGoogle Scholar
  28. 28.
    Gulick, J., Subramaniam, A., Neumann, J., and Robbins, J. (1991) Isolation and characterization of the mouse cardiac myosin heavy chain genes. J. Biol. Chem. 266, 9180–9185.PubMedGoogle Scholar
  29. 29.
    Tian, X. L. and Paul, M. (2003) Species-specific splicing and expression of angiotensin converting enzyme. Biochem. Pharmacol. 66, 1037–1044.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Xiao-Li Tian
    • 1
  • Qing K. Wang
    • 1
    • 2
    • 3
  1. 1.Department of Molecular CardiologyThe Cleveland Clinic FoundationCleveland
  2. 2.Center for Cardiovascular GeneticsThe Cleveland Clinic FoundationCleveland
  3. 3.Department of Cardiovascular MedicineThe Cleveland Clinic FoundationCleveland

Personalised recommendations