Structural Elucidation of Integrin αIIbβ3 Cytoplasmic Domain by Nuclear Magnetic Resonance Spectroscopy

Part of the Methods in Molecular Medicine book series (MIMM, volume 129)


Integrin αIIbβ3 is a heterodimeric (α/β) cell surface receptor critical for platelet aggregation, and its dysfunction is linked to thrombosis and a number of other vascular diseases. Upon agonist stimulation, which leads to platelet aggregation, αIIbβ3 is activated via a distinct inside-out signaling pathway, i.e., the short αIIb3 cytoplasmic tails receive intracellular signals, which trigger the conformational change of the extracellular domain for the high-affinity ligand binding. The structural basis for how the αIIbβ3 cytoplasmic face regulates the inside-out activation of the receptor has been extensively studied over the past decade. We have recently used nuclear magnetic resonance (NMR) spectroscopy to characterize and determine the structural features of the αIIbβ3 cytoplasmic domain. This chapter describes detailed practical procedures for performing these NMR studies, which have provided key atomic insights into the mechanism of the αIIbβ3 function, especially its inside-out signaling.

Key Words

Integrin cytoplasmic domain platelet aggregation NMR 


  1. 1.
    Hynes, R. O. (1987) Integrins: a family of cell surface receptors. Cell 48, 549–550.PubMedCrossRefGoogle Scholar
  2. 2.
    Schwartz, M. A., Schaller, M. D., and Ginsberg, M. H. (1995) Integrins: emerging paradigms of signal transduction. Annu. Rev. Cell. Biol. 11, 549–599.CrossRefGoogle Scholar
  3. 3.
    Shattil, S. J. and Ginsberg, M. H. (1997) Integrin signaling in vascular biology. J. Clin. Invest. 100, S91–S95.PubMedCrossRefGoogle Scholar
  4. 4.
    Giancotti, F. G. and Ruoslahti, E. (1999) Integrin signaling. Science 285, 1028–1032.PubMedCrossRefGoogle Scholar
  5. 5.
    Hughes, P. E. and Pfaff, M. Integrin affinity modulation. (1998) Trends Cell Biol. 8, 359–364.PubMedCrossRefGoogle Scholar
  6. 6.
    Woodside, D. G., Liu, S., and Ginsberg, M. (2001) Integrin activation. Thromb. Haemost. 86, 316–323.PubMedGoogle Scholar
  7. 7.
    Peterson, J. A., Visentin, G. P., Newman, P. J., and Aster, R. H. (1998) A recombinant soluble form of the integrin alpha IIb beta 3 (GPIIb-IIIa) assumes an active, ligand-binding conformation and is recognized by GPIIb-IIIa-specific monoclonal, allo-, auto-, and drug-dependent platelet antibodies. Blood 92, 2053–2063.PubMedGoogle Scholar
  8. 8.
    O’Toole, T. E., Mandelman, D., Forsyth, J., Shattil, S. J., Plow, E. F., and Ginsberg, M. H. (1991) Modulation of the affinity of integrin alpha IIIbbeta3 (GPIIb-IIIa) by the cytoplasmic domain of alphaIIIb. Science 254, 845–847.PubMedCrossRefGoogle Scholar
  9. 9.
    O’Toole, T. E., Katagiri, Y., Faull, R. J., et al. (1994) Integrin cytoplasmic domains mediate inside-out signal transduction. J. Cell Biol. 124, 1047–1059.PubMedCrossRefGoogle Scholar
  10. 10.
    Hughes, P. E., Diaz-Gonzalez, F., Leong, L., et al. (1996) Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J. Biol. Chem. 271, 6571–6574.PubMedCrossRefGoogle Scholar
  11. 11.
    Lu, C., Takagi, J., and Springer, T. A. (2001) Association of the membrane proximal regions of the alpha and beta subunit cytoplasmic domains constrains an integrin in the inactive state. J. Biol. Chem. 276, 14,642–14,648.PubMedCrossRefGoogle Scholar
  12. 12.
    Takagi, J., Erickson, H. P., and Springer, T. A. (2001) C-terminal opening mimics ‘inside-out’ activation of integrin alpha5beta1. Nat. Struct. Biol. 8, 412–416.PubMedCrossRefGoogle Scholar
  13. 13.
    Kim, M., Carman, C. V., and Springer, T. A. (2003) Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301, 1720–1725.PubMedCrossRefGoogle Scholar
  14. 14.
    Muir, T. W., Williams, M. J., Ginsberg, M. H., and Kent, S. B. (1994) Design and chemical synthesis of a neoprotein structural model for the cytoplasmic domain of a multisubunit cell-surface receptor: integrin alpha IIb beta 3 (platelet GPIIb-IIIa). Biochemistry 33, 7701–7708.PubMedCrossRefGoogle Scholar
  15. 15.
    Haas, T. A. and Plow, E. F. (1996) The cytoplasmic domain of αIIbβ3: a ternary complex of the integrin α and β subunits and a divalent cation. J. Biol. Chem. 271, 6017–6026.PubMedCrossRefGoogle Scholar
  16. 16.
    Vallar, L. and Kieffer, N. (1999) Divalent cations differentially regulate integrin αIIb cytoplasmic tail binding to β3 and to Calcium-and integrin-binding protein. J. Biol. Chem. 274, 17,257–17,266.PubMedCrossRefGoogle Scholar
  17. 17.
    Vinogradova, O., Velyvis, A., Velyviene, A., et al. (2002) A structural mechanism of integrin alpha(IIb)beta(3) “inside-out” activation as regulated by its cytoplasmic face. Cell 110, 587–597.PubMedCrossRefGoogle Scholar
  18. 18.
    Weijie, A. M., Hwang, P. M., and Vogel, H. J. (2002) Solution structures of the cytoplasmic tail complex from platelet integrin alpha IIb-and beta 3-subunits. Proc. Natl. Acad. Sci. USA 99, 5878–5883.CrossRefGoogle Scholar
  19. 19.
    Vinogradova, O., Vaynberg, J., Kong, X., Haas, T. A., Plow, E. F., and Qin, J. (2004) Membrane-mediated structural transitions at the cytoplasmic face during integrin activation. Proc. Natl. Acad. Sci. USA 101, 4094–4099.PubMedCrossRefGoogle Scholar
  20. 20.
    Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Bio. NMR 6, 277–293.Google Scholar
  21. 21.
    Garrett, D. S., Powers, R., Gronenborn, A. M., and Clore, G. M. (1991) A common sense approach to peak picking in two-three-and four-dimensional spectra using automatic computer analysis of contour diagrams. J. Magn. Res. 95, 214–220.Google Scholar
  22. 22.
    Schwieters, C. D., Kuszewski, J. I., Tjandra, N., and Clore, G. M. (2003) The Xplor-NIH NMR molecular structure determination package. J. Magn. Res. 160, 65–73.CrossRefGoogle Scholar
  23. 23.
    Koradi, R., Billeter, M., and Wuthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55, 29–32.PubMedCrossRefGoogle Scholar
  24. 24.
    Clore, G. M. and Gronenborn, A. M. (1998) Determining the structures of large proteins and protein complexes by NMR. Trends Biotechnol. 16, 22–34.PubMedCrossRefGoogle Scholar
  25. 25.
    Ferentz, A. E. and Wagner, G. (2000) NMR spectroscopy: a multifaceted approach to macromolecular structure. Q. Rev. Biophys. 33, 29–65.PubMedCrossRefGoogle Scholar
  26. 26.
    Clore, G. M. and Gronenborn, A. (1983) Theory of the time-dependent nuclear overhauser effect-applications to structural analysis of ligand-protein complexes in solution. J. Magn. Res. 53, 423–442.Google Scholar
  27. 27.
    Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids. John Wiley and Sons, New York.Google Scholar
  28. 28.
    Zwahlen, C., Legault, P., Vincent, S. J. F., Greenblatt, J., Konrat, R., and Kay, L. E. (1997) Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: application to a bacteriophage (N-peptide/box B RNA complex. J. Am. Chem. Soc. 119, 711–721.CrossRefGoogle Scholar
  29. 29.
    Ikura, M. and Bax, A. (1992) Isotope-filtered 2D NMR of a protein-peptide complex: study of a skeletal muscle myosin light chain kinase fragment bound to calmodulin. J. Am. Chem. Soc. 114, 2433–2440.CrossRefGoogle Scholar
  30. 30.
    Vinogradova, O., Haas, T., Plow, E. F., and Qin, J. (2000) A structural basis for integrin activation by the cytoplasmic tail of the αIIb subunit. Proc. Natl. Acad. Sci. USA 97, 1450–1455.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Jun Qin
    • 1
  1. 1.Structural Biology ProgramThe Cleveland Clinic FoundationCleveland

Personalised recommendations