Advertisement

Cell Adhesion and Migration Assays

  • Dmitry A. Soloviev
  • Elzbieta Pluskota
  • Edward F. Plow
Part of the Methods in Molecular Medicine book series (MIMM, volume 129)

Abstract

Adhesion and migration are basic responses of living cells to environmental stimuli. Such responses are central to a broad range of physiological processes, such as the immune response, repair of injured tissues, and prevention of excessive bleeding. Cell adhesion and migration also contributes to pathologies, including vascular and inflammatory diseases, as well as tumor growth and metastasis. These cellular responses depend on engagement of adhesion receptors by components of the extracellular matrix or molecules present on the surface of other cells. Hence, cell adhesion and migration assays are crucial methods in cell biology. In this chapter, several detailed protocols describing cell adhesion and migration assays are presented, and advantages and disadvantages of each method are discussed.

Key Words

Methods cell migration cell adhesion integrins Mac-1 iC3b 

References

  1. 1.
    Hynes, R. O. (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687.CrossRefPubMedGoogle Scholar
  2. 2.
    Xiong, J. P., Stehle, T., Zhang, R., et al. (2002) Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155.CrossRefPubMedGoogle Scholar
  3. 3.
    Harris, E. S., McIntyre, T. M., Prescott, S. M., and Zimmerman, G. A. (2000) The leukocyte integrins. J. Biol. Chem. 275, 23,409–23,412.CrossRefPubMedGoogle Scholar
  4. 4.
    Vetvicka, V., Thornton, B. P., and Ross, G. D. (1996) Soluble β-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J. Clin. Invest. 98, 50–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Beller, D. E., Springer, T. A., and Schreiber, R. D. (1982) Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor. J. Exper. Med. 156, 1000–1010.CrossRefGoogle Scholar
  6. 6.
    Arnaout, M. A., Todd, R. F., III, Dana, N., Melamed, J., Schlossman, S. F., and Colten, H. R. (1983) Inhibition of phagocytosis of complement C3-or immunoglobuoin G coated particles and of C3bi binding by monoclonal antibodies to a monocyte-granulocyte membrane glycoprotein (Mol). J. Clin. Invest. 72, 171–179.CrossRefPubMedGoogle Scholar
  7. 7.
    Vercellotti, G. M., Platt, J. L., Bach, F. H., and Dalmasso, A. P. (1991) Neutrophil adhesion to xenogeneic endothelium via iC3b. J. Immunol. 146, 730–734.PubMedGoogle Scholar
  8. 8.
    Arnaout, M. A. (1990) Leukocyte adhesion molecules deficiency: its structural basis, pathophysiology and implications for modulating the inflammatory response. Immunol. Rev. 114, 145–180.CrossRefPubMedGoogle Scholar
  9. 9.
    Ding, Z. M., Babensee, J. E., Simon, S. I., et al. (1999) Relative contribution of LFA-1 and Mac-1 to neutrophil adhesion and migration. J. Immunol. 163, 5029–5038.PubMedGoogle Scholar
  10. 10.
    Vetvicka, V., Thornton, B. P., Wieman, T. J., and Ross, G. D. (1997) Targeting of natural killer cells to mammary carcinoma via naturally occurring tumor cell-bound iC3b and β-glucan-primed CR3 (CD11b/CD18). J. Immunol. 159, 599–605.PubMedGoogle Scholar
  11. 11.
    Zhang, L. and Plow, E. F. (1996) A discrete site modulates activation of I domains: application to integrin αMβ2. J. Biol. Chem. 271, 29,953–29,957.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang, L. and Plow, E. F. (1996) Overlapping, but not identical sites, are involved in the recognition of C3bi, NIF, and adhesive ligands by the αMβ2 integrins. J. Biol. Chem. 271, 18,211–18,216.CrossRefPubMedGoogle Scholar
  13. 13.
    Solovjov, D. A., Pluskota, E., and Plow, E. F. (2005) Distinct roles for the α and β subunits in the functions of integrin αMβ2. J. Biol. Chem. 280, 1336–1345.CrossRefPubMedGoogle Scholar
  14. 14.
    Davis, G. E. (1992) The Mac-1 and p150,95 beta 2 integrins bind denatured proteins to mediate leukocyte cell-substrate adhesion. Exp. Cell Res. 200, 242–252.CrossRefPubMedGoogle Scholar
  15. 15.
    Wright, S. D. and Jong, M. T. (1986) Adhesion-promoting receptors on human macrophages recognize Escherichia coli by binding to lipopolysaccharide. J. Exp. Med. 164, 1876–1888.CrossRefPubMedGoogle Scholar
  16. 16.
    Charo, I. F., Nannizzi, L., Smith, J. W., and Cheresh, D. A. (1990) The vitronectin receptor αvβ3 binds fibronectin and acts in concert with α5β1 in promoting cellular attachment and spreading on fibronectin. J. Cell Biol. 111, 2795–2800.CrossRefPubMedGoogle Scholar
  17. 17.
    Connolly, D. T., Knight, M. B., Harakas, N. K., Wittwer, A. J., and Feder, J. (1986) Determination of the number of endothelial cells in culture using an acid phosphatase assay. Anal. Biochem. 152, 136–140.CrossRefPubMedGoogle Scholar
  18. 18.
    Wennerberg, K., Lohikangas, L., Gullberg, D., Pfaff, M., Johansson, S., and Fässler, R. (1996) β1 integrin-dependent and-independent polymerization of fibronectin. J. Cell Biol. 132, 227–238.CrossRefPubMedGoogle Scholar
  19. 19.
    Elices, M. J., Urry, L. A., and Hemler, M. E. (1991) Receptor functions for the integrin VLA-3: Fibronectin, collagen, and laminin binding are differentially influenced by ARG-GLY-ASP peptide and by divalent cations. J. Cell Biol. 112, 169–181.CrossRefPubMedGoogle Scholar
  20. 20.
    Metelitsa, L. S., Gillies, S. D., Super, M., Shimada, H., Reynolds, C. P., and Seeger, R. C. (2002) Antidisialoganglioside/granulocyte macrophage-colony-stimulating factor fusion protein facilitates neutrophil antibody-dependent cellular cytotoxicity and depends on FcgammaRII (CD32) and Mac-1 (CD11b/CD18) for enhanced effector cell adhesion and azurophil granule exocytosis. Blood 99, 4166–4173.CrossRefPubMedGoogle Scholar
  21. 21.
    Retta, S. F., Ternullo, M., and Tarone, G. (1999) Adhesion to matrix proteins, in Adhesion Protein Protocols, Methods in Molecular Biology, (Dejana, E., Corada, M., eds.), Humana, Totowa, NJ, pp. 125–131.CrossRefGoogle Scholar
  22. 22.
    de la Monte, S. M., Lahousse, S. A., Carter, J., and Wands, J. R. (2002) ATP luminescence-based motility-invasion assay. Biotechniques 33, 98–104.PubMedGoogle Scholar
  23. 23.
    Forsyth, C. B., Solovjov, D. A., Ugarova, T. P., and Plow, E. F. (2001) Integrin αMβ2-mediated cell migration to fibrinogen and its recognition peptides. J. Exp. Med. 193, 1123–1133.CrossRefPubMedGoogle Scholar
  24. 24.
    Nelson, R., Quie, P. G., and Simmons, R. L. (1975) Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J. Immunol. 115, 1650–1656.PubMedGoogle Scholar
  25. 25.
    Heit, B., Tavener, S., Raharjo, E., and Kubes, P. (2002) An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J. Cell Biol. 159, 91–102.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Dmitry A. Soloviev
    • 1
    • 2
  • Elzbieta Pluskota
    • 1
    • 2
  • Edward F. Plow
    • 1
    • 2
  1. 1.Joseph J. Jacobs Center for Thrombosis and Vascular BiologyThe Cleveland Clinic FoundationCleveland
  2. 2.Department of Molecular CardiologyThe Cleveland Clinic FoundationCleveland

Personalised recommendations