Skip to main content

Applications of Adenoviral Vector-Mediated Gene Transfer in Cardiovascular Research

  • Protocol
Cardiovascular Disease

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 129))

  • 1186 Accesses

Abstract

Cardiovascular disease is a leading cause of morbidity and mortality worldwide. New studies are needed to explore novel therapeutic options for patients that are refractory to existing therapies. Gene transfer using adenoviral vectors has shown promising results in animal studies, and is now being tested in many clinical trials. In this chapter, the advantages of adenoviral vector-mediated gene transfer for cardiovascular disease applications, and the methods on how to construct, propagate, and evaluate adenoviral vectors, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hedman, M., Hartikainen, J., Syvanne, M., et al. (2003) Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 107, 2677–2683.

    Article  CAS  PubMed  Google Scholar 

  2. Rowe, W. P., Huebner, R. J., Gilmore, L. K., Parrott, R. H., and Ward, T. G. (1953) Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc. Soc. Exp. Biol. Med. 84, 570–573.

    CAS  PubMed  Google Scholar 

  3. Volpers, C. and Kochanek, S. (2004) Adenoviral vectors for gene transfer and therapy. J. Gene Med. 6(Suppl 1), S164–S171.

    Article  CAS  PubMed  Google Scholar 

  4. Bergelson, J. M., Cunningham, J. A., Droguett, G., et al. (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  5. Tomko, R. P., Xu, R., and Philipson, L. (1997) HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc. Natl. Acad. Sci. USA 94, 3352–3356.

    Article  CAS  PubMed  Google Scholar 

  6. Noutsias, M., Fechner, H., de Jonge, H., et al. (2001) Human coxsackie-adenovirus receptor is colocalized with integrins alpha(v)beta(3) and alpha(v)beta(5) on the cardiomyocyte sarcolemma and upregulated in dilated cardiomyopathy: implications for cardiotropic viral infections. Circulation 104, 275–280.

    CAS  PubMed  Google Scholar 

  7. Fechner, H., Noutsias, M., Tschoepe, C., et al. (2003) Induction of coxsackievirus-adenovirus-receptor expression during myocardial tissue formation and remodeling: identification of a cell-to-cell contact-dependent regulatory mechanism. Circulation 107, 876–882.

    Article  PubMed  Google Scholar 

  8. Nasuno, A., Toba, K., Ozawa, T., et al. (2004) Expression of coxsackievirus and adenovirus receptor in neointima of the rat carotid artery. Cardiovasc. Pathol. 13, 79–84.

    Article  CAS  PubMed  Google Scholar 

  9. Wickham, T. J., Mathias, P., Cheresh, D. A., and Nemerow, G. R. (1993) Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 73, 309–319.

    Article  CAS  PubMed  Google Scholar 

  10. Dechecchi, M. C., Tamanini, A., Bonizzato, A., and Cabrini, G. (2000) Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cell interactions. Virology 268, 382–390.

    Article  CAS  PubMed  Google Scholar 

  11. Smith, T. A., Idamakanti, N., Rollence, M. L., et al. (2003) Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. Hum. Gene Ther. 14, 777–787.

    Article  CAS  PubMed  Google Scholar 

  12. Dechecchi, M. C., Melotti, P., Bonizzato, A., Santacatterina, M., Chilosi, M., and Cabrini, G. (2001) Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J. Virol. 75, 8772–8780.

    Article  CAS  PubMed  Google Scholar 

  13. Yla-Herttuala, S. and Martin, J. F. (2000) Cardiovascular gene therapy. Lancet 355, 213–222.

    Article  CAS  PubMed  Google Scholar 

  14. Amalfitano, A. (1999) Next-generation adenoviral vectors: new and improved. Gene Ther. 6, 1643–1645.

    Article  CAS  PubMed  Google Scholar 

  15. Hodges, B. L., Serra, D., Hu, H., Begy, C. A., Chamberlain, J. S., and Amalfitano, A. (2000) Multiply deleted [E1, polymerase-, and pTP-] adenovirus vector persists despite deletion of the preterminal protein. J. Gene Med. 2, 250–259.

    Article  CAS  PubMed  Google Scholar 

  16. Everett, R. S., Hodges, B. L., Ding, E. Y., Xu, F., Serra, D., and Amalfitano, A. (2003) Liver toxicities typically induced by first-generation adenoviral vectors can be reduced by use of E1, E2b-deleted adenoviral vectors. Hum. Gene Ther. 14, 1715–1726.

    Article  CAS  PubMed  Google Scholar 

  17. Amalfitano, A. and Chamberlain, J. S. (1997) Isolation and characterization of packaging cell lines that coexpress the adenovirus E1, DNA polymerase, and preterminal proteins: implications for gene therapy. Gene Ther. 4, 258–263.

    Article  CAS  PubMed  Google Scholar 

  18. Amalfitano, A. and Parks, R. J. (2002) Separating fact from fiction: assessing the potential of modified adenovirus vectors for use in human gene therapy. Curr. Gene Ther. 2, 111–133.

    Article  CAS  PubMed  Google Scholar 

  19. Parks, R. J., Chen, L., Anton, M., Sankar, U., Rudnicki, M. A., and Graham, F. L. (1996) A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA 93, 13,565–13,570.

    Article  CAS  PubMed  Google Scholar 

  20. Ross, R. (1999) Atherosclerosis: an inflammatory disease. N. Engl. J. Med. 340, 115–126.

    Article  CAS  PubMed  Google Scholar 

  21. Turunen, P., Jalkanen, J., Heikura, T., et al. (2004) Adenovirus-mediated gene transfer of Lp-PLA2 reduces LDL degradation and foam cell formation in vitro. J. Lipid Res. 45, 1633–1639.

    Article  CAS  PubMed  Google Scholar 

  22. Harris, J. D., Graham, I. R., Schepelmann, S., et al. (2002) Acute regression of advanced and retardation of early aortic atheroma in immunocompetent apolipoprotein-E (apoE) deficient mice by administration of a second generation [E1(-), E3(-), polymerase(-)] adenovirus vector expressing human apoE. Hum. Mol. Genet. 11, 43–58.

    Article  CAS  PubMed  Google Scholar 

  23. Grines, C. L., Watkins, M. W., Mahmarian, J. J., et al. (2003) A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J. Am. Coll. Cardiol. 42, 1339–1347.

    Article  CAS  PubMed  Google Scholar 

  24. Rosengart, T. K., Lee, L. Y., Patel, S. R., et al. (1999) Six-month assessment of a phase I trial of angiogenic gene therapy for the treatment of coronary artery disease using direct intramyocardial administration of an adenovirus vector expressing the VEGF121 cDNA. Ann. Surg. 230, 466–470.

    Article  CAS  PubMed  Google Scholar 

  25. Rosengart, T. K., Lee, L. Y., Patel, S. R., et al. (1999) Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100, 468–474.

    CAS  PubMed  Google Scholar 

  26. Patel, S. R., Lee, L. Y., Mack, C. A., et al. (1999) Safety of direct myocardial administration of an adenovirus vector encoding vascular endothelial growth factor 121. Hum. Gene Ther. 10, 1331–1348.

    Article  CAS  PubMed  Google Scholar 

  27. Rosen, M. R., Robinson, R. B., Brink, P., and Cohen, I. S. (2004) Recreating the biological pacemaker. Anat. Rec. A. Discov. Mol. Cell Evol. Biol. 280, 1046–1052.

    Article  PubMed  Google Scholar 

  28. Plotnikov, A. N., Sosunov, E. A., Qu, J., et al. (2004) Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation 109, 506–512.

    Article  PubMed  Google Scholar 

  29. Tevaearai, H. T. and Koch, W. J. (2004) Molecular restoration of beta-adrenergic receptor signaling improves contractile function of failing hearts. Trends Cardiovasc. Med. 14, 252–256.

    Article  CAS  PubMed  Google Scholar 

  30. Most, P., Eicher, C., Volkers, M., Pleger, S. T., and Katus, H. A. (2004) Hope for a broken heart? Trends Biotechnol. 22, 487–489.

    Article  CAS  PubMed  Google Scholar 

  31. Shah, A. S., White, D. C., Emani, S., et al. (2001) In vivo ventricular gene delivery of a beta-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation 103, 1311–1316.

    Article  CAS  PubMed  Google Scholar 

  32. Most, P., Pleger, S. T., Volkers, M., et al. (2004) Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. J. Clin. Invest. 114, 1550–1563.

    CAS  PubMed  Google Scholar 

  33. Hajjar, R. J. (2005) Cardiac gene therapy: kick-starting calcium cycling in rats. Gene Ther.

    Google Scholar 

  34. Hoshijima, M. (2005) Gene therapy targeted at calcium handling as an approach to the treatment of heart failure. Pharmacol. Ther. 105, 211–228.

    Article  CAS  PubMed  Google Scholar 

  35. Yla-Herttuala, S., Markkanen, J. E., and Rissanen, T. T. (2004) Gene therapy for ischemic cardiovascular diseases: some lessons learned from the first clinical trials. Trends Cardiovasc. Med. 14, 295–300.

    Article  PubMed  Google Scholar 

  36. Grines, C. L., Watkins, M. W., Helmer, G., et al. (2002) Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation 105, 1291–1297.

    Article  CAS  PubMed  Google Scholar 

  37. Grines, C., Rubanyi, G. M., Kleiman, N. S., Marrott, P., and Watkins, M. W. (2003) Angiogenic gene therapy with adenovirus 5 fibroblast growth factor-4 (Ad5FGF-4): a new option for the treatment of coronary artery disease. Am. J. Cardiol. 92, 24N–31N.

    Article  CAS  PubMed  Google Scholar 

  38. Laitinen, M., Pakkanen, T., Donetti, E., et al. (1997) Gene transfer into the carotid artery using an adventitial collar: comparison of the effectiveness of the plasmid-liposome complexes, retroviruses, pseudotyped retroviruses, and adenoviruses. Hum. Gene Ther. 8, 1645–1650.

    Article  CAS  PubMed  Google Scholar 

  39. Fuster, V., Charlton, P., and Boyd, A. (2001) Clinical protocol. A phase IIb, randomized, multicenter, double-blind study of the efficacy and safety of Trinam (EG004) in stenosis prevention at the graft-vein anastomosis site in dialysis patients. Hum. Gene Ther. 12, 2025–2027.

    CAS  PubMed  Google Scholar 

  40. Bhardwaj, S., Roy, H., Karpanen, T., et al. (2005) Periadventitial angiopoietin-1 gene transfer induces angiogenesis in rabbit carotid arteries. Gene Ther. 12, 388–394.

    Article  CAS  PubMed  Google Scholar 

  41. Yla-Herttuala, S. and Alitalo, K. (2003) Gene transfer as a tool to induce therapeutic vascular growth. Nat. Med. 9, 694–701.

    Article  PubMed  Google Scholar 

  42. Barbato, J. E. and Tzeng, E. (2004) iNOS gene transfer for graft disease. Trends Cardiovasc. Med. 14, 267–272.

    Article  CAS  PubMed  Google Scholar 

  43. Turunen, P., Puhakka, H., Rutanen, J., et al. (2005) Intravascular adenovirus-mediated lipoprotein-associated phospholipase A2 gene transfer reduces neointima formation in balloon-denuded rabbit aorta. Atherosclerosis 179, 27–33.

    Article  CAS  PubMed  Google Scholar 

  44. Fleury, S., Driscoll, R., Simeoni, E., et al. (2004) Helper-dependent adenovirus vectors devoid of all viral genes cause less myocardial inflammation compared with first-generation adenovirus vectors. Basic Res. Cardiol. 99, 247–256.

    CAS  PubMed  Google Scholar 

  45. Askari, A., Unzek, S., Goldman, C. K., et al. (2004) Cellular, but not direct, adenoviral delivery of vascular endothelial growth factor results in improved left ventricular function and neovascularization in dilated ischemic cardiomyopathy. J. Am. Coll. Cardiol. 43, 1908–1914.

    Article  CAS  PubMed  Google Scholar 

  46. Benihoud, K., Yeh, P., and Perricaudet, M. (1999) Adenovirus vectors for gene delivery. Curr. Opin. Biotechnol. 10, 440–447.

    Article  CAS  PubMed  Google Scholar 

  47. Rosenfeld, M. A., Siegfried, W., Yoshimura, K., et al. (1991) Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo. Science 252, 431–434.

    Article  CAS  PubMed  Google Scholar 

  48. Bett, A. J., Haddara, W., Prevec, L., and Graham, F. L. (1994) An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc. Natl. Acad. Sci. USA 91, 8802–8806.

    Article  CAS  PubMed  Google Scholar 

  49. He, T. C., Zhou, S., da Costa, L. T., Yu, J., Kinzler, K. W., and Vogelstein, B. (1998) A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514.

    Article  CAS  PubMed  Google Scholar 

  50. Graham, F. L., Smiley, J., Russell, W. C., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74.

    Article  CAS  PubMed  Google Scholar 

  51. Graham, F. L. and van der Eb, A. J. (1973) Transformation of rat cells by DNA of human adenovirus 5. Virology 54, 536–539.

    Article  CAS  PubMed  Google Scholar 

  52. Maizel, J. V., Jr., White, D. O., and Scharff, M. D. (1968) The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of Types 2, 7A and 12. Virology 36, 115–125.

    Article  CAS  PubMed  Google Scholar 

  53. Nyberg-Hoffman, C., Shabram, P., Li, W., Giroux, D., and Aguilar-Cordova, E. (1997) Sensitivity and reproducibility in adenoviral infectious titer determination. Nat. Med. 3, 808–811.

    Article  CAS  PubMed  Google Scholar 

  54. Weaver, L. S. and Kadan, M. J. (2000) Evaluation of adenoviral vectors by flow cytometry. Methods 21, 297–312.

    Article  CAS  PubMed  Google Scholar 

  55. Lochmuller, H., Jani, A., Huard, J., et al. (1994) Emergence of early region 1-containing replication-competent adenovirus in stocks of replication-defective adenovirus recombinants (delta E1 + delta E3) during multiple passages in 293 cells. Hum. Gene Ther. 5, 1485–1491.

    Article  CAS  PubMed  Google Scholar 

  56. Ishii-Watabe, A., Uchida, E., Iwata, A., et al. (2003) Detection of replication-competent adenoviruses spiked into recombinant adenovirus vector products by infectivity PCR. Mol. Ther. 8, 1009–1016.

    Article  CAS  PubMed  Google Scholar 

  57. Suzuki, E., Murata, T., Watanabe, S., et al. (2004) A simple method for the simultaneous detection of E1A and E1B in adenovirus stocks. Oncol. Rep. 11, 173–178.

    CAS  PubMed  Google Scholar 

  58. Fallaux, F. J., Bout, A., van der Velde, I., et al. (1998) New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum. Gene Ther. 9, 1909–1917.

    Article  CAS  PubMed  Google Scholar 

  59. Imperiale, M. J., Kao, H. T., Feldman, L. T., Nevins, J. R., and Strickland, S. (1984) Common control of the heat shock gene and early adenovirus genes: evidence for a cellular E1A-like activity. Mol. Cell. Biol. 4, 867–874.

    CAS  PubMed  Google Scholar 

  60. Nevins, J. R., Imperiale, M. J., Kao, H. T., Strickland, S., and Feldman, L. T. (1984) Detection of an adenovirus E1A-like activity in mammalian cells. Curr. Top. Microbiol. Immunol. 113, 15–19.

    CAS  PubMed  Google Scholar 

  61. Yang, Y., Nunes, F. A., Berencsi, K., Furth, E. E., Gonczol, E., and Wilson, J. M. (1994) Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. USA 91, 4407–4411.

    Article  CAS  PubMed  Google Scholar 

  62. Bett, A. J., Prevec, L., and Graham, F. L. (1993) Packaging capacity and stability of human adenovirus type 5 vectors. J. Virol. 67, 5911–5921.

    CAS  PubMed  Google Scholar 

  63. Ng, P., Parks, R. J., and Graham, F. L. (2002) Preparation of helper-dependent adenovirus vectors. Methods Mol. Med. 69, 371–388.

    CAS  PubMed  Google Scholar 

  64. Palmer, D. and Ng, P. (2003) Improved system for helper-dependent adenoviral vector production. Mol Ther. 8, 846–852.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Xu, F., Serra, D., Amalfitano, A. (2006). Applications of Adenoviral Vector-Mediated Gene Transfer in Cardiovascular Research. In: Wang, Q.K. (eds) Cardiovascular Disease. Methods in Molecular Medicine, vol 129. Humana Press. https://doi.org/10.1385/1-59745-213-0:209

Download citation

  • DOI: https://doi.org/10.1385/1-59745-213-0:209

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-892-8

  • Online ISBN: 978-1-59745-213-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics