Applications of Adenoviral Vector-Mediated Gene Transfer in Cardiovascular Research

  • Fang Xu
  • Delila Serra
  • Andrea Amalfitano
Part of the Methods in Molecular Medicine book series (MIMM, volume 129)


Cardiovascular disease is a leading cause of morbidity and mortality worldwide. New studies are needed to explore novel therapeutic options for patients that are refractory to existing therapies. Gene transfer using adenoviral vectors has shown promising results in animal studies, and is now being tested in many clinical trials. In this chapter, the advantages of adenoviral vector-mediated gene transfer for cardiovascular disease applications, and the methods on how to construct, propagate, and evaluate adenoviral vectors, are discussed.

Key Words

Gene therapy adenoviral vector cardiovascular disease 


  1. 1.
    Hedman, M., Hartikainen, J., Syvanne, M., et al. (2003) Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 107, 2677–2683.CrossRefPubMedGoogle Scholar
  2. 2.
    Rowe, W. P., Huebner, R. J., Gilmore, L. K., Parrott, R. H., and Ward, T. G. (1953) Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc. Soc. Exp. Biol. Med. 84, 570–573.PubMedGoogle Scholar
  3. 3.
    Volpers, C. and Kochanek, S. (2004) Adenoviral vectors for gene transfer and therapy. J. Gene Med. 6(Suppl 1), S164–S171.CrossRefPubMedGoogle Scholar
  4. 4.
    Bergelson, J. M., Cunningham, J. A., Droguett, G., et al. (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323.CrossRefPubMedGoogle Scholar
  5. 5.
    Tomko, R. P., Xu, R., and Philipson, L. (1997) HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc. Natl. Acad. Sci. USA 94, 3352–3356.CrossRefPubMedGoogle Scholar
  6. 6.
    Noutsias, M., Fechner, H., de Jonge, H., et al. (2001) Human coxsackie-adenovirus receptor is colocalized with integrins alpha(v)beta(3) and alpha(v)beta(5) on the cardiomyocyte sarcolemma and upregulated in dilated cardiomyopathy: implications for cardiotropic viral infections. Circulation 104, 275–280.PubMedGoogle Scholar
  7. 7.
    Fechner, H., Noutsias, M., Tschoepe, C., et al. (2003) Induction of coxsackievirus-adenovirus-receptor expression during myocardial tissue formation and remodeling: identification of a cell-to-cell contact-dependent regulatory mechanism. Circulation 107, 876–882.CrossRefPubMedGoogle Scholar
  8. 8.
    Nasuno, A., Toba, K., Ozawa, T., et al. (2004) Expression of coxsackievirus and adenovirus receptor in neointima of the rat carotid artery. Cardiovasc. Pathol. 13, 79–84.CrossRefPubMedGoogle Scholar
  9. 9.
    Wickham, T. J., Mathias, P., Cheresh, D. A., and Nemerow, G. R. (1993) Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 73, 309–319.CrossRefPubMedGoogle Scholar
  10. 10.
    Dechecchi, M. C., Tamanini, A., Bonizzato, A., and Cabrini, G. (2000) Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cell interactions. Virology 268, 382–390.CrossRefPubMedGoogle Scholar
  11. 11.
    Smith, T. A., Idamakanti, N., Rollence, M. L., et al. (2003) Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. Hum. Gene Ther. 14, 777–787.CrossRefPubMedGoogle Scholar
  12. 12.
    Dechecchi, M. C., Melotti, P., Bonizzato, A., Santacatterina, M., Chilosi, M., and Cabrini, G. (2001) Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J. Virol. 75, 8772–8780.CrossRefPubMedGoogle Scholar
  13. 13.
    Yla-Herttuala, S. and Martin, J. F. (2000) Cardiovascular gene therapy. Lancet 355, 213–222.CrossRefPubMedGoogle Scholar
  14. 14.
    Amalfitano, A. (1999) Next-generation adenoviral vectors: new and improved. Gene Ther. 6, 1643–1645.CrossRefPubMedGoogle Scholar
  15. 15.
    Hodges, B. L., Serra, D., Hu, H., Begy, C. A., Chamberlain, J. S., and Amalfitano, A. (2000) Multiply deleted [E1, polymerase-, and pTP-] adenovirus vector persists despite deletion of the preterminal protein. J. Gene Med. 2, 250–259.CrossRefPubMedGoogle Scholar
  16. 16.
    Everett, R. S., Hodges, B. L., Ding, E. Y., Xu, F., Serra, D., and Amalfitano, A. (2003) Liver toxicities typically induced by first-generation adenoviral vectors can be reduced by use of E1, E2b-deleted adenoviral vectors. Hum. Gene Ther. 14, 1715–1726.CrossRefPubMedGoogle Scholar
  17. 17.
    Amalfitano, A. and Chamberlain, J. S. (1997) Isolation and characterization of packaging cell lines that coexpress the adenovirus E1, DNA polymerase, and preterminal proteins: implications for gene therapy. Gene Ther. 4, 258–263.CrossRefPubMedGoogle Scholar
  18. 18.
    Amalfitano, A. and Parks, R. J. (2002) Separating fact from fiction: assessing the potential of modified adenovirus vectors for use in human gene therapy. Curr. Gene Ther. 2, 111–133.CrossRefPubMedGoogle Scholar
  19. 19.
    Parks, R. J., Chen, L., Anton, M., Sankar, U., Rudnicki, M. A., and Graham, F. L. (1996) A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA 93, 13,565–13,570.CrossRefPubMedGoogle Scholar
  20. 20.
    Ross, R. (1999) Atherosclerosis: an inflammatory disease. N. Engl. J. Med. 340, 115–126.CrossRefPubMedGoogle Scholar
  21. 21.
    Turunen, P., Jalkanen, J., Heikura, T., et al. (2004) Adenovirus-mediated gene transfer of Lp-PLA2 reduces LDL degradation and foam cell formation in vitro. J. Lipid Res. 45, 1633–1639.CrossRefPubMedGoogle Scholar
  22. 22.
    Harris, J. D., Graham, I. R., Schepelmann, S., et al. (2002) Acute regression of advanced and retardation of early aortic atheroma in immunocompetent apolipoprotein-E (apoE) deficient mice by administration of a second generation [E1(-), E3(-), polymerase(-)] adenovirus vector expressing human apoE. Hum. Mol. Genet. 11, 43–58.CrossRefPubMedGoogle Scholar
  23. 23.
    Grines, C. L., Watkins, M. W., Mahmarian, J. J., et al. (2003) A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J. Am. Coll. Cardiol. 42, 1339–1347.CrossRefPubMedGoogle Scholar
  24. 24.
    Rosengart, T. K., Lee, L. Y., Patel, S. R., et al. (1999) Six-month assessment of a phase I trial of angiogenic gene therapy for the treatment of coronary artery disease using direct intramyocardial administration of an adenovirus vector expressing the VEGF121 cDNA. Ann. Surg. 230, 466–470.CrossRefPubMedGoogle Scholar
  25. 25.
    Rosengart, T. K., Lee, L. Y., Patel, S. R., et al. (1999) Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100, 468–474.PubMedGoogle Scholar
  26. 26.
    Patel, S. R., Lee, L. Y., Mack, C. A., et al. (1999) Safety of direct myocardial administration of an adenovirus vector encoding vascular endothelial growth factor 121. Hum. Gene Ther. 10, 1331–1348.CrossRefPubMedGoogle Scholar
  27. 27.
    Rosen, M. R., Robinson, R. B., Brink, P., and Cohen, I. S. (2004) Recreating the biological pacemaker. Anat. Rec. A. Discov. Mol. Cell Evol. Biol. 280, 1046–1052.CrossRefPubMedGoogle Scholar
  28. 28.
    Plotnikov, A. N., Sosunov, E. A., Qu, J., et al. (2004) Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation 109, 506–512.CrossRefPubMedGoogle Scholar
  29. 29.
    Tevaearai, H. T. and Koch, W. J. (2004) Molecular restoration of beta-adrenergic receptor signaling improves contractile function of failing hearts. Trends Cardiovasc. Med. 14, 252–256.CrossRefPubMedGoogle Scholar
  30. 30.
    Most, P., Eicher, C., Volkers, M., Pleger, S. T., and Katus, H. A. (2004) Hope for a broken heart? Trends Biotechnol. 22, 487–489.CrossRefPubMedGoogle Scholar
  31. 31.
    Shah, A. S., White, D. C., Emani, S., et al. (2001) In vivo ventricular gene delivery of a beta-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation 103, 1311–1316.CrossRefPubMedGoogle Scholar
  32. 32.
    Most, P., Pleger, S. T., Volkers, M., et al. (2004) Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. J. Clin. Invest. 114, 1550–1563.PubMedGoogle Scholar
  33. 33.
    Hajjar, R. J. (2005) Cardiac gene therapy: kick-starting calcium cycling in rats. Gene Ther. Google Scholar
  34. 34.
    Hoshijima, M. (2005) Gene therapy targeted at calcium handling as an approach to the treatment of heart failure. Pharmacol. Ther. 105, 211–228.CrossRefPubMedGoogle Scholar
  35. 35.
    Yla-Herttuala, S., Markkanen, J. E., and Rissanen, T. T. (2004) Gene therapy for ischemic cardiovascular diseases: some lessons learned from the first clinical trials. Trends Cardiovasc. Med. 14, 295–300.CrossRefPubMedGoogle Scholar
  36. 36.
    Grines, C. L., Watkins, M. W., Helmer, G., et al. (2002) Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation 105, 1291–1297.CrossRefPubMedGoogle Scholar
  37. 37.
    Grines, C., Rubanyi, G. M., Kleiman, N. S., Marrott, P., and Watkins, M. W. (2003) Angiogenic gene therapy with adenovirus 5 fibroblast growth factor-4 (Ad5FGF-4): a new option for the treatment of coronary artery disease. Am. J. Cardiol. 92, 24N–31N.CrossRefPubMedGoogle Scholar
  38. 38.
    Laitinen, M., Pakkanen, T., Donetti, E., et al. (1997) Gene transfer into the carotid artery using an adventitial collar: comparison of the effectiveness of the plasmid-liposome complexes, retroviruses, pseudotyped retroviruses, and adenoviruses. Hum. Gene Ther. 8, 1645–1650.CrossRefPubMedGoogle Scholar
  39. 39.
    Fuster, V., Charlton, P., and Boyd, A. (2001) Clinical protocol. A phase IIb, randomized, multicenter, double-blind study of the efficacy and safety of Trinam (EG004) in stenosis prevention at the graft-vein anastomosis site in dialysis patients. Hum. Gene Ther. 12, 2025–2027.PubMedGoogle Scholar
  40. 40.
    Bhardwaj, S., Roy, H., Karpanen, T., et al. (2005) Periadventitial angiopoietin-1 gene transfer induces angiogenesis in rabbit carotid arteries. Gene Ther. 12, 388–394.CrossRefPubMedGoogle Scholar
  41. 41.
    Yla-Herttuala, S. and Alitalo, K. (2003) Gene transfer as a tool to induce therapeutic vascular growth. Nat. Med. 9, 694–701.CrossRefPubMedGoogle Scholar
  42. 42.
    Barbato, J. E. and Tzeng, E. (2004) iNOS gene transfer for graft disease. Trends Cardiovasc. Med. 14, 267–272.CrossRefPubMedGoogle Scholar
  43. 43.
    Turunen, P., Puhakka, H., Rutanen, J., et al. (2005) Intravascular adenovirus-mediated lipoprotein-associated phospholipase A2 gene transfer reduces neointima formation in balloon-denuded rabbit aorta. Atherosclerosis 179, 27–33.CrossRefPubMedGoogle Scholar
  44. 44.
    Fleury, S., Driscoll, R., Simeoni, E., et al. (2004) Helper-dependent adenovirus vectors devoid of all viral genes cause less myocardial inflammation compared with first-generation adenovirus vectors. Basic Res. Cardiol. 99, 247–256.PubMedGoogle Scholar
  45. 45.
    Askari, A., Unzek, S., Goldman, C. K., et al. (2004) Cellular, but not direct, adenoviral delivery of vascular endothelial growth factor results in improved left ventricular function and neovascularization in dilated ischemic cardiomyopathy. J. Am. Coll. Cardiol. 43, 1908–1914.CrossRefPubMedGoogle Scholar
  46. 46.
    Benihoud, K., Yeh, P., and Perricaudet, M. (1999) Adenovirus vectors for gene delivery. Curr. Opin. Biotechnol. 10, 440–447.CrossRefPubMedGoogle Scholar
  47. 47.
    Rosenfeld, M. A., Siegfried, W., Yoshimura, K., et al. (1991) Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo. Science 252, 431–434.CrossRefPubMedGoogle Scholar
  48. 48.
    Bett, A. J., Haddara, W., Prevec, L., and Graham, F. L. (1994) An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc. Natl. Acad. Sci. USA 91, 8802–8806.CrossRefPubMedGoogle Scholar
  49. 49.
    He, T. C., Zhou, S., da Costa, L. T., Yu, J., Kinzler, K. W., and Vogelstein, B. (1998) A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514.CrossRefPubMedGoogle Scholar
  50. 50.
    Graham, F. L., Smiley, J., Russell, W. C., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74.CrossRefPubMedGoogle Scholar
  51. 51.
    Graham, F. L. and van der Eb, A. J. (1973) Transformation of rat cells by DNA of human adenovirus 5. Virology 54, 536–539.CrossRefPubMedGoogle Scholar
  52. 52.
    Maizel, J. V., Jr., White, D. O., and Scharff, M. D. (1968) The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of Types 2, 7A and 12. Virology 36, 115–125.CrossRefPubMedGoogle Scholar
  53. 53.
    Nyberg-Hoffman, C., Shabram, P., Li, W., Giroux, D., and Aguilar-Cordova, E. (1997) Sensitivity and reproducibility in adenoviral infectious titer determination. Nat. Med. 3, 808–811.CrossRefPubMedGoogle Scholar
  54. 54.
    Weaver, L. S. and Kadan, M. J. (2000) Evaluation of adenoviral vectors by flow cytometry. Methods 21, 297–312.CrossRefPubMedGoogle Scholar
  55. 55.
    Lochmuller, H., Jani, A., Huard, J., et al. (1994) Emergence of early region 1-containing replication-competent adenovirus in stocks of replication-defective adenovirus recombinants (delta E1 + delta E3) during multiple passages in 293 cells. Hum. Gene Ther. 5, 1485–1491.CrossRefPubMedGoogle Scholar
  56. 56.
    Ishii-Watabe, A., Uchida, E., Iwata, A., et al. (2003) Detection of replication-competent adenoviruses spiked into recombinant adenovirus vector products by infectivity PCR. Mol. Ther. 8, 1009–1016.CrossRefPubMedGoogle Scholar
  57. 57.
    Suzuki, E., Murata, T., Watanabe, S., et al. (2004) A simple method for the simultaneous detection of E1A and E1B in adenovirus stocks. Oncol. Rep. 11, 173–178.PubMedGoogle Scholar
  58. 58.
    Fallaux, F. J., Bout, A., van der Velde, I., et al. (1998) New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum. Gene Ther. 9, 1909–1917.CrossRefPubMedGoogle Scholar
  59. 59.
    Imperiale, M. J., Kao, H. T., Feldman, L. T., Nevins, J. R., and Strickland, S. (1984) Common control of the heat shock gene and early adenovirus genes: evidence for a cellular E1A-like activity. Mol. Cell. Biol. 4, 867–874.PubMedGoogle Scholar
  60. 60.
    Nevins, J. R., Imperiale, M. J., Kao, H. T., Strickland, S., and Feldman, L. T. (1984) Detection of an adenovirus E1A-like activity in mammalian cells. Curr. Top. Microbiol. Immunol. 113, 15–19.PubMedGoogle Scholar
  61. 61.
    Yang, Y., Nunes, F. A., Berencsi, K., Furth, E. E., Gonczol, E., and Wilson, J. M. (1994) Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. USA 91, 4407–4411.CrossRefPubMedGoogle Scholar
  62. 62.
    Bett, A. J., Prevec, L., and Graham, F. L. (1993) Packaging capacity and stability of human adenovirus type 5 vectors. J. Virol. 67, 5911–5921.PubMedGoogle Scholar
  63. 63.
    Ng, P., Parks, R. J., and Graham, F. L. (2002) Preparation of helper-dependent adenovirus vectors. Methods Mol. Med. 69, 371–388.PubMedGoogle Scholar
  64. 64.
    Palmer, D. and Ng, P. (2003) Improved system for helper-dependent adenoviral vector production. Mol Ther. 8, 846–852.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Fang Xu
    • 1
  • Delila Serra
    • 1
  • Andrea Amalfitano
    • 1
  1. 1.Department of PediatricsDuke University Medical CenterDurham

Personalised recommendations