Advertisement

Optical Mapping of Shock-Induced Arrhythmogenesis in the Rabbit Heart With Healed Myocardial Infarction

Fluorescent Imaging With a Photodiode Array
  • Yuanna Cheng
Part of the Methods in Molecular Medicine book series (MIMM, volume 129)

Abstract

Optical mapping of electrical activity in the heart employs digital imaging and voltage-sensitive dyes. These methods have become an increasingly common research tools in basic cardiac electrophysiology. Significant advantages of this approach include simultaneous noncontact recording of entire action potentials free of electrical stimulus-induced artifacts from multiple closely adjacent sites, and adjustable spatial and temporal resolutions. In this way, the activation pattern as well as the repolarization pattern can be monitored by dynamic registration of transmembrane potential changes. As a result, the success of these techniques is most evident in the investigation of the mechanisms of pacing, vulnerability, and defibrillation, in which conventional electrical recordings are hampered by stimulus-induced artifacts. Using optical mapping technology and instrumentation driven by LabVIEW software, we mapped changes in transmembrane voltage during defibrillation shocks and identified the mechanisms of vulnerability and defibrillation in rabbit hearts with healed myocardial infarction (≥4 wk postinfarction).

Key Words

Optical mapping voltage-sensitive dye healed myocardial infarction infarction border zone cardiac vulnerability defibrillation 

References

  1. 1.
    Efimov, I. R., Gray, E. A., and Roth, B. J. (2000) Virtual Electrodes and De-excitation: New Insights into Fibrillation Induction and Defibrillation. J. Cardiovasc. Electrophysiol. 11, 339–353.CrossRefPubMedGoogle Scholar
  2. 2.
    Efimov, I. R., Cheng, Y., Van Wagoner, D. R., Mazgalev, T., and Tchou, P. J. (1998) Virtual electrode-induced phase singularity: a basic mechanism of failure to defibrillate. Circ. Res. 82, 918–925.PubMedGoogle Scholar
  3. 3.
    Lin, S.-F., Roth, B. J., and Wikswo, J. P. (1999) Quatrefoil reentry in myocardium: an optical imaging study of the induction mechanism. J. Cardiovasc. Electrophysiol. 10, 574–586.CrossRefPubMedGoogle Scholar
  4. 4.
    Efimov, I. R., Cheng, Y. N., Biermann, M., Van Wagoner, D. R., Mazgalev, T., and Tchou, P. J. (1997) Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode. J. Cardiovasc. Electrophysiol. 8, 1031–1045.CrossRefPubMedGoogle Scholar
  5. 5.
    Salama, G., Kanai, A., and Efimov, I. R. (1994) Subthreshold stimulation of Purkinje fibers interrupts ventricular tachycardia in intact hearts. Experimental study with voltage-sensitive dyes and imaging techniques. Circ. Res. 74, 604–619.PubMedGoogle Scholar
  6. 6.
    Efimov, I. R., Huang, D. T., Rendt, J. M., and Salama, G. (1994) Optical mapping of repolarization and refractoriness from intact hearts. Circulation 90, 1469–1480.PubMedGoogle Scholar
  7. 7.
    Cheng, Y., Mowrey, K. A., Van Wagoner, D. R., Tchou, P. J., and Efimov, I. R. (1999) Virtual electrode induced re-excitation: a basic mechanism of defibrillation. Circ. Res. 85, 1056–1066.PubMedGoogle Scholar
  8. 8.
    Li, L., Nikolski, V., Wallick, D. W., Efimov, I. R., and Cheng, Y. (2005) Mechanisms of enhanced shock-induced arrhythmogenesis in the rabbit heart with healed myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 289(3), H1054–H1068.CrossRefPubMedGoogle Scholar
  9. 9.
    Rosenbaum, D. S. and Jalife, J. (2002) Optical mapping of cardiac excitation and arrythmias. Futura Publishing, Armonk, NY.Google Scholar
  10. 10.
    Banville, I., Gray, R. A., Ideker, R. E., and Smith, W. M. (1999) Shock-induced figure-of-eight reentry in the isolated rabbit heart. Circ. Res. 85, 742–752.PubMedGoogle Scholar
  11. 11.
    Davidenko, J. M., Pertsov, A. V., Salomonsz, R., Baxter, W., and Jalife, J. (1992) Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355, 349–351.CrossRefPubMedGoogle Scholar
  12. 12.
    Gray, R. A., Jalife, J., Panfilov, A., et al. (1995) Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. Circulation 91, 2454–2469.PubMedGoogle Scholar
  13. 13.
    Knisley, S. B., Hill, B. C., and Ideker, R. E. (1994) Virtual electrode effects in myocardial fibers. Biophys. J. 66, 719–728.CrossRefPubMedGoogle Scholar
  14. 14.
    Liu, Y. C., Cabo, C., Salomonsz, R., Delmar, M., Davidenko, J., and Jalife, J. (1993) Effects of diacetyl monoxime on the electrical properties of sheep and guinea pig ventricular muscle. Cardiovasc. Res. 27, 1991–1997.CrossRefPubMedGoogle Scholar
  15. 15.
    Lee, M. H., Lin, S. F., Ohara, T., et al. (2001) Effects of diacetyl monoxime and cytochalasin D on ventricular fibrillation in swine right ventricles. Am. J. Physiol. Heart Circ. Physiol. 280, H2689–H2696.PubMedGoogle Scholar
  16. 16.
    Biermann, M., Rubart, M., Wu, J., Moreno, A., Josiah-Durant, A., and Zipes, D. P. (1998) Effect of cytochalasin D and 2,3-butanedione monoxime on isometric twitch force and transmembrane action potentials in isolated canine right ventricular trabecular fibers. J. Cardiovasc. Electrophysiol. 9, 1336–1347.CrossRefPubMedGoogle Scholar
  17. 17.
    Wu, J., Biermann, M., Rubart, M., and Zipes, D. P. (1998) Cytochalasin D as excitation-contraction uncoupler for optically mapping action potentials in wedges of ventricular myocardium. J. Cardiovasc. Electrophysiol. 9, 1336–1347.CrossRefPubMedGoogle Scholar
  18. 18.
    Cheng, Y., Li, L., Nikolski, V., Wallick, D. W., and Efimov, I. R. (2004) Shock-induced arrhythmogenesis is enhanced by 2,3-butanedione monoxime compared with cytochalasin D. Am. J. Physiol. Heart Circ. Physiol. 286, H310–H318.CrossRefPubMedGoogle Scholar
  19. 19.
    Efimov, I. R. and Cheng, Y. (2002) Optical mapping of cardiac stimulation: fluorescent imaging with a photodiode array, in Quantitative Cardiac Electrophysiology, (Carbo, C., Rosenbaum, D. S., eds.), Marcel Dekker, Inc., New York.Google Scholar
  20. 20.
    Efimov, I. R., Nikolski, V. P., and Salama, G. (2004) Optical imaging of the heart. Circ. Res. 95, 21–33.CrossRefPubMedGoogle Scholar
  21. 21.
    Fast, V. G. (2004) Recording action potentials using voltage-sensitive dyes, in Practical Methods in Cardiovascular Research, (Dhein, S., Mohr, F. W., and Delmar, M., eds.), Springer, Heidelberg.Google Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Yuanna Cheng
    • 1
  1. 1.Department of Cardiovascular MedicineThe Cleveland Clinic FoundationCleveland

Personalised recommendations