Skip to main content

A Hierarchical Protein Folding Scheme Based on the Building Block Folding Model

  • Protocol
Protein Folding Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 350))

  • 1052 Accesses

Abstract

The building block protein folding model states that the native protein structure is the product of a combinatorial assembly of relatively structurally independent contiguous parts of the protein that possess a hydrophobic core, i.e., building blocks (BBs). According to this model, our group proposed a three-stage scheme for a feasible time-wise semi ab-intio protein structure prediction. Given a protein sequence, at the first stage of the prediction scheme, we propose cutting the sequence into structurally assigned BBs. Next, we perform a combinatorial assembly and attempt to predict the relative three-dimensional arrangement of the BBs. In the third stage, we refine and rank the assemblies. The scheme has proven to be very promising in reducing the complexity of the protein folding problem and gaining insight into the protein folding process. In this chapter, we describe the different stages of the scheme and discuss a possible application of the model to protein design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Struthers, M. D., Cheng, R. P., and Imperiali, B. (1996) Design of a monomeric 23-residue polypeptide with defined tertiary structure. Science 271, 342–345.

    Article  CAS  PubMed  Google Scholar 

  2. Tsai, C. J. and Nussinov, R. (2001) The building block folding model and the kinetics of protein folding. Protein Eng. 14, 723–733.

    Article  CAS  PubMed  Google Scholar 

  3. Tsai, C. J., Maizel, J. V., and Nussinov, R. (2000) Anatomy of protein structures: Visualizing how a one-dimensional protein chain folds into a three-dimensional shape. Proc Natl Acad Sci USA 97, 12,038–12,043.

    Article  CAS  PubMed  Google Scholar 

  4. Tsai, C. J., Polverino de Laureto, P., Fontana, A., and Nussinov, R. (2002) Comparison of protein fragments identified by limited proteolysis and by computational cutting of proteins. Protein Sci. 11, 1753–1770.

    Google Scholar 

  5. Sinha, N., Tsai, C. J., and Nussinov, R. (2001) Building blocks, hinge-bending motions and protein topology. J Biomol Struct Dyn. 19, 369–380.

    CAS  PubMed  Google Scholar 

  6. Inbar, Y., Benyamini, H., Nussinov, R., and Wolfson, H. J. (2005) Prediction of multimolecular assemblies by multiple docking. J. Mol. Biol. 349, 435–447.

    Article  CAS  PubMed  Google Scholar 

  7. Tsai, H. H., Tsai, C. J., Ma, B., and Nussinov, R. (2004) In silico protein design by combinatorial assembly of protein building blocks. Protein Sci. 13, 2753–2765.

    Article  CAS  PubMed  Google Scholar 

  8. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., et al. (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542.

    Article  CAS  PubMed  Google Scholar 

  9. Haspel, N., Tsai, C. J., Wolfson, H., and Nussinov, R. (2003) Hierarchical protein folding pathways: a computational study of protein fragments. Protein 51, 203–215.

    Article  CAS  Google Scholar 

  10. Wainreb, G. (2005) Templating the building blocks and secondary-structure guided superimposition tool. Master’s thesis. Faculty of medicine, Tel Aviv University, Tel-Aviv, Israel.

    Google Scholar 

  11. Wainreb, G., Haspel, N., Wolfson, H., and Nussinov, R. (2006) A permissive secondary structure-guided superimposition tool for clustering of protein fragments toward protein structure prediction via fragment assembly. Bioinformatics, in press.

    Google Scholar 

  12. Ballard, D. H. (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 13, 111–122.

    Article  Google Scholar 

  13. Lamdan, Y. and Wolfson, H. J. (1988) Geometric hashing: a general and efficient model-based recognition scheme. In: Second International Conference on Computer Vision (Tampa, FL, December 5–8, 1988), Washington, D.C., IEEE Computer Society Press, pp. 238–249.

    Google Scholar 

  14. Wolfson, H. J. (1990) Model-based recognition by geometric hashing. In Proc. 1st. Euro. Conf. on Comput. Vis April 23–27, 1990, Antibes, France. 526–536.

    Google Scholar 

  15. Haspel, N., Tsai, C.-J., Wolfson, H., and Nussinov, R. (2003) Reducing the computational complexity of protein folding via fragment folding and assembly. Protein Sci. 12, 1177–1187.

    Article  CAS  PubMed  Google Scholar 

  16. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    CAS  PubMed  Google Scholar 

  17. Cayley, A. (1889) A theorem on trees. Quart. J. Math. 23, 276–378.

    Google Scholar 

  18. Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637.

    Article  CAS  PubMed  Google Scholar 

  19. Cormen, T., Leiserson, C., and Rivest, R. (1990) Introduction to Algorithms, MIT Press, Cambridge, MA.

    Google Scholar 

  20. Norel, R., Lin, S. L., Wolfson, H., and Nussinov, R. (1995) Molecular surface complementarity at protein-protein interfaces: the critical role played by surface normals at well placed, sparse points in docking. J. Mol. Biol. 252, 263–273.

    Article  CAS  PubMed  Google Scholar 

  21. Polak, V. (2003) Budda: backbone unbound docking application. Master’s thesis School of Comp. Sci., Tel-Aviv University, Israel.

    Google Scholar 

  22. Duhovny, D., Nussinov, R., and Wolfson, H. (2002) Efficient unbound docking of rigid molecules. In: Workshop on Algorithms in Bioinformatics. Lecture Notes in Computer Science 2452, (Guigo, R. and Gusfield, D., eds.), Springer Verlag, Rome, Italy, pp. 185–200.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Haspel, N. et al. (2007). A Hierarchical Protein Folding Scheme Based on the Building Block Folding Model. In: Bai, Y., Nussinov, R. (eds) Protein Folding Protocols. Methods in Molecular Biology™, vol 350. Humana Press. https://doi.org/10.1385/1-59745-189-4:189

Download citation

  • DOI: https://doi.org/10.1385/1-59745-189-4:189

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-622-1

  • Online ISBN: 978-1-59745-189-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics