Skip to main content

Application of Single Molecule Förster Resonance Energy Transfer to Protein Folding

  • Protocol
Protein Folding Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 350))

Abstract

Protein folding is a process characterized by a large degree of conformational heterogeneity. In such cases, classical experimental methods yield only mean values, averaged over large ensembles of molecules. The microscopic distributions of conformations, trajectories, or sequences of events often remain unknown, and with them the underlying molecular mechanisms. Signal averaging can be avoided by observing individual molecules. A particularly versatile method is highly sensitive fluorescence detection. In combination with Förster resonance energy transfer, distances and conformational dynamics can be investigated in single molecules. This chapter introduces the practical aspects of applying this method to protein folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., and Gaub, H. E. (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112.

    Article  CAS  PubMed  Google Scholar 

  2. Engel, A., Gaub, H. E., and Müller, D. J. (1999) Atomic force microscopy: a forceful way with single molecules. Curr. Biol. 9, R133–R136.

    Article  CAS  PubMed  Google Scholar 

  3. Moerner, W. E. (2002) A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. J. Phys. Chem. B 106, 910–927.

    Article  CAS  Google Scholar 

  4. Haustein, E. and Schwille, P. (2004) Single-molecule spectroscopic methods. Curr. Opin. Struct. Biol. 14, 531–540.

    Article  CAS  PubMed  Google Scholar 

  5. Michalet, X., Kapanidis, A. N., Laurence, T., et al. (2003) The power and prospects of fluorescence microscopies and spectroscopies. Annu. Rev. Biophys. Biomol. Struct. 32, 161–182.

    Article  CAS  PubMed  Google Scholar 

  6. Tamarat, P., Maali, A., Lounis, B., and Orrit, M. (2000) Ten years of single-molecule spectroscopy. J. Phys. Chem. A 104, 1–16.

    Article  CAS  Google Scholar 

  7. Plakhotnik, T., Donley, E. A., and Wild, U. P. (1997) Single-molecule spectroscopy. Annu. Rev. Phys. Chem. 48, 181–212.

    Article  CAS  PubMed  Google Scholar 

  8. Xie, X. S. (1996) Single-molecule spectroscopy and dynamics at room temperature. Acc. Chem. Res. 29, 598–606.

    Article  CAS  Google Scholar 

  9. Goodwin, P. M., Ambrose, W. P., and Keller, R. A. (1996) Single-molecule detection in liquids by laser-induced fluorescence. Acc. Chem. Res. 29, 607–613.

    Article  CAS  Google Scholar 

  10. Böhmer, M. and Enderlein, J. (2003) Fluorescence spectroscopy of single molecules under ambient conditions: methodology and technology. Chem. Phys. Chem. 4, 793–808.

    PubMed  Google Scholar 

  11. Haran, G. (2003) Single-molecule fluorescence spectroscopy of biomolecular folding. J. Physics-Condensed Matter 15, R1219–R1317.

    Google Scholar 

  12. Förster, T. (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 6, 55–75.

    Article  Google Scholar 

  13. Ha, T., Enderle, T., Ogletree, D. F., Chemla, D. S., Selvin, P. R., and Weiss, S. (1996) Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. USA 93, 6264–6248.

    Article  CAS  PubMed  Google Scholar 

  14. Selvin, P. R. (2000) The renaissance of fluorescence resonance energy transfer. Nature Struct. Biol. 7, 730–734.

    Article  CAS  PubMed  Google Scholar 

  15. Haas, E., Katchalskikatzir, E., and Steinberg, I. Z. (1978) Brownian-motion of ends of oligopeptide chains in solution as estimated by energy-transfer between chain ends. Biopolymers 17, 11–31.

    Article  CAS  Google Scholar 

  16. Vix, A. and Lami, H. (1995) Protein fluorescence decay: discrete components or distribution of lifetimes: really no way out of the dilemma. Biophys. J. 68, 1145–1151.

    Article  CAS  PubMed  Google Scholar 

  17. Sakmann, B. and Neher, E. (1995) Single Channel Recording, Plenum Press, New York, NY.

    Google Scholar 

  18. Zhuang, X. and Rief, M. (2003) Single-molecule folding. Curr. Opin. Struct. Biol. 13, 88–97.

    Article  CAS  PubMed  Google Scholar 

  19. Kellermayer, M. S., Smith, S. B., Granzier, H. L., and Bustamante, C. (1997) Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112–1116.

    Article  CAS  PubMed  Google Scholar 

  20. Jia, Y. W., Talaga, D. S., Lau, W. L., Lu, H. S. M., DeGrado, W. F., and Hochstrasser, R. M. (1999) Folding dynamics of single GCN4 peptides by fluorescence resonant energy transfer confocal microscopy. Chem. Phys. 247, 69–83.

    Article  CAS  Google Scholar 

  21. Talaga, D. S., Lau, W. L., Roder, H., et al. (2000) Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy. Proc. Natl. Acad. Sci. USA 97, 13,021–13,026.

    Article  CAS  PubMed  Google Scholar 

  22. Deniz, A. A., Laurence, T. A., Beligere, G. S., et al. (2000) Single-molecule protein folding: Diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc. Natl. Acad. Sci. USA 97, 5179–5184.

    Article  CAS  PubMed  Google Scholar 

  23. Schuler, B., Lipman, E. A., and Eaton, W. A. (2002) Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419, 743–747.

    Article  CAS  PubMed  Google Scholar 

  24. Lipman, E. A., Schuler, B., Bakajin, O., and Eaton, W. A. (2003) Single-molecule measurement of protein folding kinetics. Science 301, 1233–1235.

    Article  CAS  PubMed  Google Scholar 

  25. McCarney, E. R., Werner, J. H., Bernstein, S. L., et al. (2005) Site-specific dimensions across a highly denatured protein; a single molecule study. J. Mol. Biol. 352, 672–678.

    Article  CAS  PubMed  Google Scholar 

  26. Groll, J., Amirgoulova, E. V., Ameringer, T., et al. (2004) Biofunctionalized, ultrathin coatings of cross-linked star-shaped poly(ethylene oxide) allow reversible folding of immobilized proteins. J. Am. Chem. Soc. 126, 4234–4239.

    Article  CAS  PubMed  Google Scholar 

  27. Rhoades, E., Gussakovsky, E., and Haran, G. (2003) Watching proteins fold one molecule at a time. Proc. Natl. Acad. Sci. USA 100, 3197–3202.

    Article  CAS  PubMed  Google Scholar 

  28. Rhoades, E., Cohen, M., Schuler, B., and Haran, G. (2004) Two-state folding observed in individual protein molecules. J. Am. Chem. Soc. 126, 14,686–14,687.

    Article  CAS  PubMed  Google Scholar 

  29. Schuler, B. (2005) Single-molecule fluorescence spectroscopy of protein folding. Chemphyschem. 6, 1206–1220.

    Article  CAS  PubMed  Google Scholar 

  30. Van Der Meer, BW, Coker, G. III, and Chen, S. Y. S. (1994) Resonance energy transfer: theory and data. New York, Weinheim, Cambridge: VCH Publishers, Inc.

    Google Scholar 

  31. Deniz, A. A., Laurence, T. A., Dahan, M., Chemla, D. S., Schultz, P. G., and Weiss, S. (2001) Ratiometric single-molecule studies of freely diffusing biomolecules. Annu. Rev. Phys. Chem. 52, 233–253.

    Article  CAS  PubMed  Google Scholar 

  32. Eggeling, C., Berger, S., Brand, L., et al. (2001) Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. J. Biotechnol. 86, 163–180.

    Article  CAS  PubMed  Google Scholar 

  33. Schuler, B., Lipman, E. A., Steinbach, P. J., Kumke, M., and Eaton, W. A. (2005) Polyproline and the “spectroscopic ruler” revisited with single molecule fluorescence. Proc. Natl. Acad. Sci. USA 102, 2754–2759.

    Article  CAS  PubMed  Google Scholar 

  34. Ha, T. (2001) Single-molecule fluorescence resonance energy transfer. Methods 25, 78–86.

    Article  CAS  PubMed  Google Scholar 

  35. Moerner, W. E. and Fromm, D. P. (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74, 3597–3619.

    Article  CAS  Google Scholar 

  36. Wahl, M., Koberling, F., Patting, M., Rahn, H., and Erdmann, R. (2004) Time-resolved confocal fluorescence imaging and spectrocopy system with single molecule sensitivity and sub-micrometer resolution. Curr. Pharm. Biotechnol. 5, 299–308.

    Article  CAS  PubMed  Google Scholar 

  37. Hohng, S., Joo, C., and Ha, T. (2004) Single-molecule three-color FRET. Biophys. J. 87, 1328–1337.

    Article  CAS  PubMed  Google Scholar 

  38. Clamme, J.-P. and Deniz, A. A. (2005) Three-color single-molecule fluorescence resonance energy transfer. Chem. Phys. Chem. 6, 74–77.

    CAS  PubMed  Google Scholar 

  39. Rothwell, P. J., Berger, S., Kensch, O., et al. (2003) Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase: primer/template complexes. Proc. Natl. Acad. Sci. USA 100, 1655–1660.

    Article  CAS  PubMed  Google Scholar 

  40. Williams, R. M., Piston, D. W., and Webb, W. W. (1994) 2-photon molecular-excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry. FASEB J. 8, 804–813.

    CAS  PubMed  Google Scholar 

  41. Margittai, M., Widengren, J., Schweinberger, E., et al. (2003) Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1. Proc. Natl. Acad. Sci. USA 100, 15,516–15,521.

    Article  CAS  PubMed  Google Scholar 

  42. Mujumdar, R. B., Ernst, L. A., Mujumdar, S. R., Lewis, C. J., and Waggoner, A. S. (1993) Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjug. Chem. 4, 105–111.

    Article  CAS  PubMed  Google Scholar 

  43. Panchuk-Voloshina, N., Haugland, R. P., Bishop-Stewart, J., et al. (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J. Histochem. Cytochem. 47, 1179–1188.

    CAS  PubMed  Google Scholar 

  44. Murphy, C. J. (2002) Optical sensing with quantum dots. Anal. Chem. 74, 520A–526A.

    Article  CAS  PubMed  Google Scholar 

  45. Chan, W. C., Maxwell, D. J., Gao, X., Bailey, R. E., Han, M., and Nie, S. (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13, 40–46.

    Article  CAS  PubMed  Google Scholar 

  46. Lippitz, M., Erker, W., Decker, H., van Holde, K. E., and Basche, T. (2002) Two-photon excitation microscopy of tryptophan-containing proteins. Proc. Natl. Acad. Sci. USA 99, 2772–2777.

    Article  CAS  PubMed  Google Scholar 

  47. Shimomura, O. (2005) The discovery of aequorin and green fluorescent protein. J. Microsc. 217, 1–15.

    Article  CAS  PubMed  Google Scholar 

  48. Sako, Y. and Uyemura, T. (2002) Total internal reflection fluorescence microscopy for single-molecule imaging in living cells. Cell Struct. Funct. 27, 357–365.

    Article  CAS  PubMed  Google Scholar 

  49. Dawson, P. E. and Kent, S. B. (2000) Synthesis of native proteins by chemical ligation. Annu. Rev. Biochem. 69, 923–960.

    Article  CAS  PubMed  Google Scholar 

  50. Ratner, V., Kahana, E., Eichler, M., and Haas, E. (2002) A general strategy for site-specific double labeling of globular proteins for kinetic FRET studies. Bioconjug. Chem. 13, 1163–1170.

    Article  CAS  PubMed  Google Scholar 

  51. Kapanidis, A. N. and Weiss, S. (2002) Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. J. Chem. Phys. 117, 10,953–10,964.

    Article  CAS  Google Scholar 

  52. David, R., Richter, M. P., and Beck-Sickinger, A. G. (2004) Expressed protein ligation. Method and applications. Eur. J. Biochem. 271, 663–677.

    Article  CAS  PubMed  Google Scholar 

  53. Schuler, B. and Pannell, L. K. (2002) Specific labeling of polypeptides at amino-terminal cysteine residues using Cy5-benzyl thioester. Bioconjug. Chem. 13, 1039–1043.

    Article  CAS  PubMed  Google Scholar 

  54. Yamaguchi, J., Nemoto, N., Sasaki, T., et al. (2001) Rapid functional analysis of protein-protein interactions by fluorescent C-terminal labeling and single-molecule imaging. FEBS Lett. 502, 79–83.

    Article  CAS  PubMed  Google Scholar 

  55. Cropp, T. A. and Schultz, P. G. (2004) An expanding genetic code. Trends Genet. 20, 625–630.

    Article  CAS  PubMed  Google Scholar 

  56. Hillisch, A., Lorenz, M., and Diekmann, S. (2001) Recent advances in FRET: distance determination in protein-DNA complexes. Curr. Opin. Struct. Biol. 11, 201–207.

    Article  CAS  PubMed  Google Scholar 

  57. Norman, D. G., Grainger, R. J., Uhrin, D., and Lilley, D. M. (2000) Location of cyanine-3 on double-stranded DNA: importance for fluorescence resonance energy transfer studies. Biochemistry 39, 6317–6324.

    Article  CAS  PubMed  Google Scholar 

  58. Clegg, R. M., Murchie, A. I., Zechel, A., and Lilley, D. M. (1993) Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 90, 2994–2998.

    Article  CAS  PubMed  Google Scholar 

  59. Stryer, L. and Haugland, R. P. (1967) Energy transfer: a spectroscopic ruler. Proc. Natl. Acad. Sci. USA 58, 719–726.

    Article  CAS  PubMed  Google Scholar 

  60. Cowan, P. M. and McGavin, S. (1955) Structure of poly-L-proline. Nature 176, 501–503.

    Article  CAS  Google Scholar 

  61. Schimmel, P. R. and Flory, P. J. (1967) Conformational energy and configurational statistics of poly-L-proline. Proc. Natl. Acad. Sci. USA 58, 52–59.

    Article  CAS  PubMed  Google Scholar 

  62. Lakowicz, J. R. (1999) Principles of Fluorescence Spectroscopy. Kluwer Academic/Plenum Publishers, New York, NY.

    Google Scholar 

  63. Englander, S. W., Calhoun, D. B., and Englander, J. J. (1987) Biochemistry without oxygen. Anal. Biochem. 161, 300–306.

    Article  CAS  PubMed  Google Scholar 

  64. Amirgoulova, E. V., Groll, J., Heyes, C. D., et al. (2004) Biofunctionalized polymer surfaces exhibiting minimal interaction towards immobilized proteins. Chem. Phys. Chem. 5, 552–555.

    CAS  PubMed  Google Scholar 

  65. Boukobza, E., Sonnenfeld, A., and Haran, G. (2001) Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy. J. Phys. Chem. B 105, 12,165–12,170.

    Article  CAS  Google Scholar 

  66. MacDonald, R. C., MacDonald, R. I., Menco, B. P., Takeshita, K., Subbarao, N. K., and Hu, L. R. (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim. Biophys. Acta 1061, 297–303.

    Article  CAS  PubMed  Google Scholar 

  67. Frieden, C., Chattopadhyay, K., and Elson, E. L. (2002) What fluorescence correlation spectroscopy can tell us about unfolded proteins. Adv. Protein Chem. 62, 91–109.

    Article  CAS  PubMed  Google Scholar 

  68. Chattopadhyay, K., Elson, E. L., and Frieden, C. (2005) The kinetics of conformational fluctuations in an unfolded protein measured by fluorescence methods. Proc. Natl. Acad. Sci. USA 102, 2385–2389.

    Article  CAS  PubMed  Google Scholar 

  69. Berglund, A. J., Doherty, A. C., and Mabuchi, H. (2002) Photon statistics and dynamics of fluorescence resonance energy transfer. Phys. Rev. Lett. 89, 068101.

    Google Scholar 

  70. Gopich, I. V. and Szabo, A. (2005) Theory of photon statistics in single-molecule Förster resonance energy transfer. J. Chem. Phys. 122, 14,707.

    Article  PubMed  Google Scholar 

  71. Kapanidis, A. N., Lee, N. K., Laurence, T. A., Doose, S., Margeat, E., and Weiss, S. (2004) Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules. Proc. Natl. Acad. Sci. USA 101, 8936–8941.

    Article  CAS  PubMed  Google Scholar 

  72. Kapanidis, A. N., Laurence, T. A., Lee, N. K., Margeat, E., Kong, X., and Weiss, S. (2005) Alternating-Laser Excitation of Single Molecules. Acc. Chem. Res. 38, 523–533.

    Article  CAS  PubMed  Google Scholar 

  73. Cantor, C. R. and Schimmel, P. R. (1980) Biophysical Chemistry, W. H. Freeman and Company, San Francisco, CA.

    Google Scholar 

  74. Muller, B. K., Zaychikov, E., Brauchle, C., and Lamb, D. C. (2005) Pulsed Interleaved Excitation. Biophys. J. 89, 3508–3522.

    Article  PubMed  Google Scholar 

  75. Kremer, W., Schuler, B., Harrieder, S., et al. (2001) Solution NMR structure of the cold-shock protein from the hyperthermophilic bacterium Thermotoga maritima. Eur. J. Biochem. 268, 2527–2539.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Schuler, B. (2007). Application of Single Molecule Förster Resonance Energy Transfer to Protein Folding. In: Bai, Y., Nussinov, R. (eds) Protein Folding Protocols. Methods in Molecular Biology™, vol 350. Humana Press. https://doi.org/10.1385/1-59745-189-4:115

Download citation

  • DOI: https://doi.org/10.1385/1-59745-189-4:115

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-622-1

  • Online ISBN: 978-1-59745-189-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics