Skip to main content

Degenerate Oligonucleotide Gene Shuffling

  • Protocol
  • 2386 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 352))

Abstract

Improvement of the biochemical characteristics of enzymes has been aided by misincorporation mutagenesis and DNA shuffling. Shuffling techniques can be used on a collection of mutants of the same gene, or related families of genes can be shuffled to produce mutants encoding chimeric gene products. One difficulty with current shuffling procedures is the predominance of unshuffled (“parental”) molecules in the pool of mutants. We describe a procedure for gene shuffling using degenerate primers that allows control of the relative levels of recombination between the genes that are shuffled and reduces the regeneration of unshuffled parental genes. This procedure has the advantage of avoiding the use of endonucleases for gene fragmentation before shuffling and allows the use of random mutagenesis of selected segments of the gene as part of the procedure. We illustrate the use of the technique with a diverse family of β-xylanase genes that possess widely different G and C contents.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Crameri, A., Whitehorn, E. A., Tate, E., and Stemmer, W. P. C. (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14, 315–319.

    Article  PubMed  CAS  Google Scholar 

  2. Stemmer, W. P. C. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391.

    Article  PubMed  CAS  Google Scholar 

  3. Stemmer, W. P. C. (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. USA 91, 10,747–10,751.

    Article  CAS  Google Scholar 

  4. Schmidt-Dannert, C., Umeno, D., and Arnold, F. H. (2000) Molecular breeding of carotenoid biosynthetic pathways. Nature Biotechnol. 18, 750–753.

    Article  CAS  Google Scholar 

  5. Kikuchi, M., Ohnishi, K., and Harayama, S. (1999) Novel family shuffling methods for the in vitro evolution of enzymes. Gene 236, 159–167.

    Article  PubMed  CAS  Google Scholar 

  6. Morris, D. D., Gibbs, D. D., Chin, C. W., et al. (1998) Cloning of the xynB gene from Dictyoglomus thermophilum strain Rt46B.1 and action of the gene-product on kraft pulp. Appl. Environ. Microbiol. 64, 1759–1765.

    PubMed  CAS  Google Scholar 

  7. Gibbs, M. D., Nevalainen, K. M. H., and Bergquist, P. L. (2001) Degenerate oligonucleotide gene shuffling (DOGS): a method for enhancing the frequency of recombination with family shuffling. Gene 271, 13–20.

    Article  PubMed  CAS  Google Scholar 

  8. Sakka, K., Kojima, Y., Kondo, T., Karita, S., Ohmiya, K., and Shimada, K. (1993) Nucleotide sequence of the Clostridium stercorarium xynA gene encoding xylanase A: identification of catalytic and cellulose binding domains. Biosci. Biotechnol. Biochem. 57, 273–277.

    Article  PubMed  CAS  Google Scholar 

  9. Yang, V. W., Zhuang, Z., Elegir, G., and Jeffries, T. W. (1995) Alkaline-active xylanase produced by an alkaliphilic Bacillus sp isolated from kraft pulp. J. Ind. Microbiol. 15, 434–441.

    Article  CAS  Google Scholar 

  10. Morris, D. D., Gibbs, M. D., Ford, M., Thomas, J., and Bergquist, P. L. (1999) Family 10 and 11 xylanase genes from Caldicellulosiruptor isolate Rt69B.1. Extremophiles 3, 103–111.

    Article  PubMed  CAS  Google Scholar 

  11. Fernandes, A. C., Fontes, C. M., Gilbert, H. J., Hazlewood, G. P., Fernandes, T. H., and Ferreira, L. M. (1999) Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes. Biochem. J. 342, 105–110.

    Article  PubMed  CAS  Google Scholar 

  12. Elegir, G., Szakacs, G., and Jeffries, T. W. (1994) Purification, characterization and substrate specificity of multiple xylanases from Streptomyces sp strain B-12-2. Appl. Environ. Microbiol. 60, 2609–2615.

    PubMed  CAS  Google Scholar 

  13. Rose, T. M., Schultz, E. R., Henikoff, J. G., Pietrokovski, S., McCallum, C. M., and Henikoff, S. (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res. 26, 1628–1635.

    Article  PubMed  CAS  Google Scholar 

  14. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 24, 4876–4882.

    Article  Google Scholar 

  15. Rice, P., Longden, I., and Bleasby, A. (2000) EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277.

    Article  PubMed  CAS  Google Scholar 

  16. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59.

    Article  PubMed  CAS  Google Scholar 

  17. Teather, R. M. and Wood, P. J. (1982) Use of Congo Red polysaccharide interaction in enumeration and characterisation of cellulolytic bacteria from bovine rumen. Appl. Environ. Microbiol. 43, 777–780.

    PubMed  CAS  Google Scholar 

  18. Lever, M. (1973) Colorimetric and fluorometric carbohydrate determination with p-hydroxybenzoic acid hydrazide. Biochem. Med. 7, 274–281.

    Article  PubMed  CAS  Google Scholar 

  19. Britton, H. T. S. and Robinson, R. A. (1931) Universal buffer solutions and the dissociation constant of veronal. J. Chem. Soc. 1, 1456–1462.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Bergquist, P.L., Gibbs, M.D. (2007). Degenerate Oligonucleotide Gene Shuffling. In: Arndt, K.M., Müller, K.M. (eds) Protein Engineering Protocols. Methods in Molecular Biology™, vol 352. Humana Press. https://doi.org/10.1385/1-59745-187-8:191

Download citation

  • DOI: https://doi.org/10.1385/1-59745-187-8:191

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-072-4

  • Online ISBN: 978-1-59745-187-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics